OPINION MINING AND ITS IMPORTANCE IN THE ACTIVITY OF CONTEMPORARY ENTERPRISES

Paweł Lula
Cracow University of Economics
Poland

Opinion mining vs. sentiment analysis

Opinion mining:

- processing a set of search results for a given item,
- generating a list of product attributes (quality, features, etc.),
- aggregating opinion about them (poor, mixed, good).

Source: Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of WWW, pages 519–528, 2003.

Opinion mining vs. sentiment analysis

Sentiment:

overall opinion towards the subject matter.

Source: Thumbs up? Sentiment classification using machine learning techniques, Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan, Proceedings of EMNLP, pp. 79--86, 2002

Difficulties in opinion mining

- Hidden character of emotions and sentiment (very often they are not expressed directly),
- Sarcasm (irony),
- Mistakes in writing,
- Repetitions of letters, words and phrases,
- Co-references two or more expressions refer to the same person or thing (mobile, phone, headphone, it, ...),
- Negations (dislike, do not like),
- Entity recognition problem identification of names of persons, organizations, locations, monetary values,
- Comparisons (... better then...),
- Polysemy (book = reserve, book = text).

Information retrieval vs. opinion mining

- Information retrieval identification and analysis objective pieces of data,
- Opinion mining (sentiment analysis) identification and analysis subjective opinions, emotions and feelings.

Opinions' objectivisation

- Voting taking into account a large number of opinions, opinion aggregation,
- Opinion evaluation by other customers,
- Evaluation of author's authority publishing some details about opinion's author and evaluation of his/her authority by others.

Opinions' taxonomy

Criterion: opinion's form

- Binary opinions (yes/no, like/dislike, good/bad),
- Nominal values (about mobile phone: heavy, expensive, modern, ...),
- Ordered values (bad/typical/good/excellent; Likert scale)
- Text:
 - structured opinions,
 - unstructured opinions.

Criterion: the scope of knowledge

- without additional domain knowledge (based only on opinions),
- with additional domain knowledge (based on opinions and on knowledge about products or services).

Types of analysis (goals of analysis)

- Sentiment recognition analysis the general attitude to a product (positive, negative, neutral),
- Feature-based analysis identification and evaluation of main features of a given product.

Methods of analysis

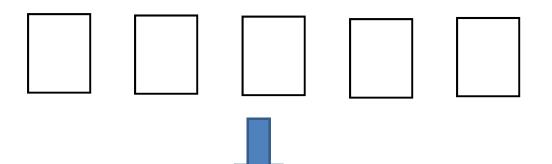
- approach based on frequency matrix,
- probabilistic approach (topic modelling, probabilistic LSA),
- rule-based methods (used regular expressions),
- approach based on domain knowledge (ontology-based approach, logic models),
- summarisation and keywords identification methods,
- classification methods for sentiment classification,
- visualisation methods,
- aggregation methods used for increasing the level of objectivism.

Examplary solution

- Opinions about hotel rooms in London (Source: http://kavita-ganesan.com/opinosis-opinion-dataset),
- Feature-based analysis,
- Model of domain knowledge: list of attributes,
- Method: probabilistic model (topic modelling based on Labeled Latent Dirichlet Allocation).

Latent Dirichlet Allocation (LDA)

Documents



Topic 1

word;
word,
word,
word,
word,
word,
word,

 $word_n$

Topic 2

word,
word,
word,
word
word
word
word
word
word

Topic 3

word_i word_j

 $word_k$

word_i

word_m word_n

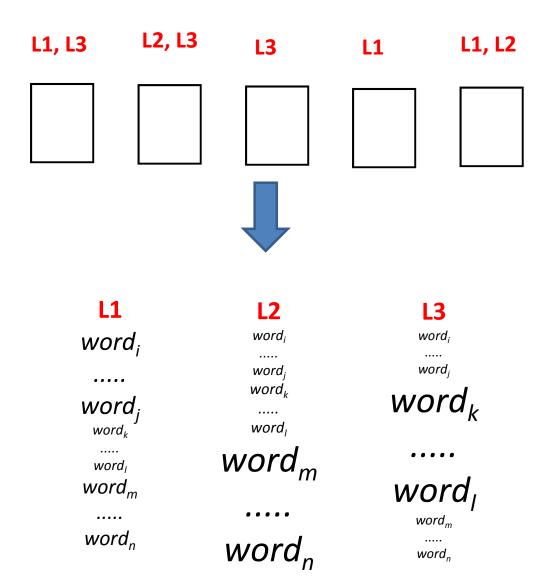
Latent Dirichlet Allocation – completely unsupervised method of topics identification.

Topics are described in terms of discrete probabilities over words.

Each document can be modeled as a mixture of topics.

Topics are **hard** to interpret.

Labeled-LDA (Ramage, Hall, Nallapati, Manning - 2009)



Labeled Latent Dirichlet Allocation – supervisedmethod of topic creation.

Topics **represent** labels (concepts) used for documents' tagging (number of topics = number of different labels).

Topics are described in terms of discrete probabilities over words.

Each document can be modeled as a mixture of topics.

Topics are **easy** to interpret.

Model of domain knowledge – a set of two-state atributes

- general
- size
- staff
- bed
- clean
- equip
- readiness
- location
- quiet
- comfort

- light
- internet
- price
- temperature
- bathroom
- food
- view
- secure
- decor
- reservation

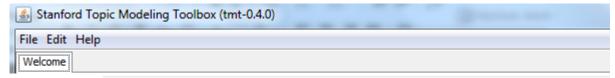
Data set structure

1	А	В
1	LABELS	DESCRIPTIONS
		We arrived at 23,30 hours and they could not recommend a restaurant so we decided to go to
		Tesco, with very limited choices but when you are hungry you do not careNext day they rang
2	staff-neg	the bell at 8,00 hours to clean the room, not being very nice being waken up so earlyEvery day
		We had a room with two double beds which was surprisingly roomy, considering the small
3	size-pos	hotel rooms I have in previous trips to London .
4	staff-pos clean-pos bed-pos	The room was quiet, clean, the bed and pillows were comfortable, and the service was
5	readiness-pos	We arrived about 11 am, room was ready .
6	size-pos clean-pos	Room was good size for Europe, clean throughout.
7	staff-pos	The Concierge desk called our room to ask if we needed any information or assistance .
8	size-pos clean-pos bed-pos	Room was plenty big enough and clean and tidy, bed was comfordable .
9	equip-neg	First, we walked in and the restroom door was broken .
10	clean-pos	Our room was typical holiday inn the bathroom could have done with updating but was
11	readiness-neg	Our rooms were not ready, we were promised rooms at a later time, etc.
12	size-pos	My room was positively huge by European standards .

Processing description

- dividing the data set into the learning (350 opinions) and the testing sets (33 opinions)
- for the learning set (containing room descriptions and labels):
 - stemming
 - usage of stop-list filter
 - Labeled LDA model building
- for testing set (containing only room description):
 - label prediction
 - model evaluation

Algorithm implementation



```
val source = CSVFile("hotel-rooms-learn.c:
   val tokenizer = {
     SimpleEnglishTokenizer() ~>
     CaseFolder() ~>
     WordsAndNumbersOnlyFilter() ~>
1
     MinimumLengthFilter(3)
2
3
   val text = {
5
     source ~>
6
     Column(3) ~>
     TokenizeWith(tokenizer) ~>
8
     TermCounter() ~>
9
     TermMinimumDocumentCountFilter(3) ~>
0
     //TermDynamicStopListFilter(30)// ~>
1
     DocumentMinimumLengthFilter(3) ~>
2
     //StopWordFilter("en")
3
     TermStopListFilter(List(
4
     "most", "and", "can", "was", "had", "with", "1
5
     "kept", "going", "out", "wasn't", "what", "pe
     "other", "did", "even", "throughout", "etc"
6
     "175", "maybe", "150", "around", "that's", "
     "itself", "then", "being", "said", "your", ";
```

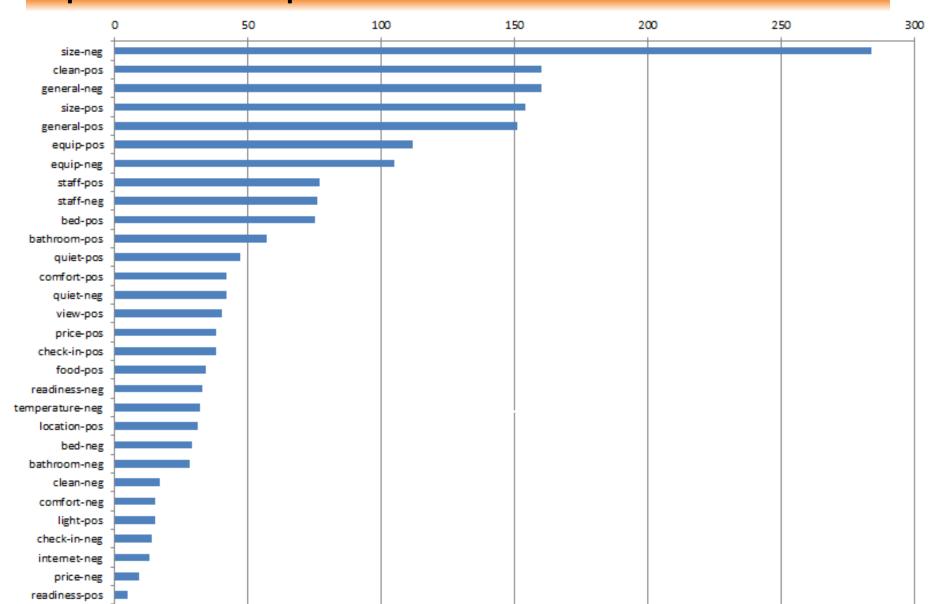
Stanford Topic Modeling Toolbox

Load a TMT script into a new tab using the File -> Open script.

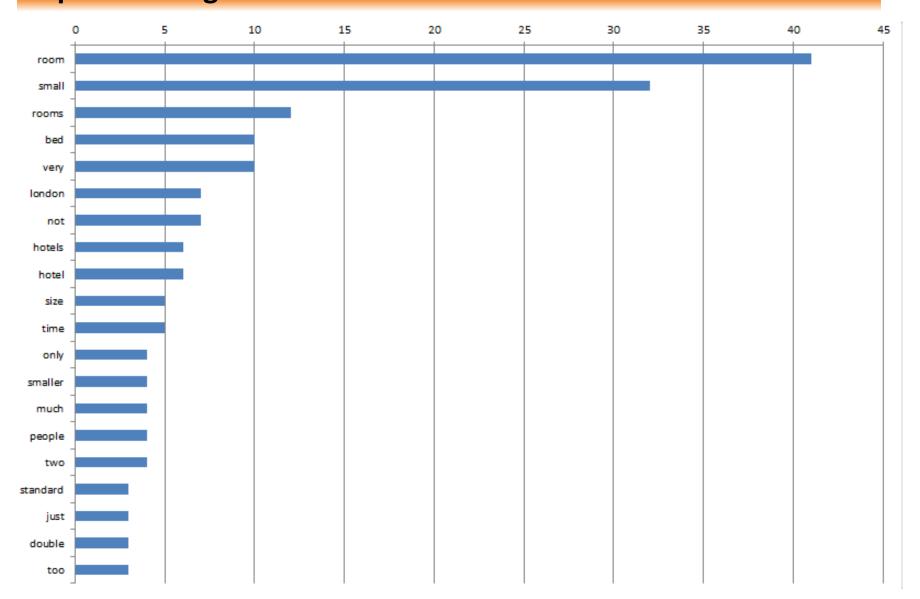
Copyright (c) 2009- The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

NLP package for Scala language and Stanford Topic Modeling Toolbox.

Topics and their importance



Topic: size-neg



Opinion:

The bathroom is a good size.

Labels:

bathroom-pos

Model results:

bathroom-pos (1,0)

Opinion:

The room was clean and, by London standards, decently sized.

Labels:

clean-pos

size-pos

Model results:

size-pos (0,98),

clean-pos (0,02)

Opinion:

When we tried to use a phone card from our room it would not work so I asked the front desk to help me and was told they couldn't really!

Labels:

staff-neg

Model results:

staff-neg (1,00)

Opinion:

The hotel room was very clean and the cleaning staff and breakfast staff were very attentive.

Labels:

clean-pos

staff-pos

Model results:

staff-pos (0,7)

clean-pos (0,3)

Model evaluation

- IR measures (for testing set):
 - Precision = 0,94
 - Recall = 0,98
- Advantages:
 - high quality
- Disadvantages:
 - time-consuming process of model building

Thank you for your attention!

OPINION MINING AND ITS IMPORTANCE IN THE ACTIVITY OF CONTEMPORARY ENTERPRISES