
Beginning
Microsoft
Power BI

A Practical Guide to
Self-Service Data Analytics
—
Third Edition
—
Dan Clark

Beginning Microsoft
Power BI

A Practical Guide to Self-Service
Data Analytics

Third Edition

Dan Clark

Beginning Microsoft Power BI: A Practical Guide to Self-Service Data Analytics

ISBN-13 (pbk): 978-1-4842-5619-0 ISBN-13 (electronic): 978-1-4842-5620-6
https://doi.org/10.1007/978-1-4842-5620-6

Copyright © 2020 by Dan Clark

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484256190. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dan Clark
Camp Hill, PA, USA

https://doi.org/10.1007/978-1-4842-5620-6

iii

Table of Contents

Chapter 1: Introducing Power BI �� 1

Why Use Power BI? ��� 1

The xVelocity In-Memory Analytics Engine ��� 3

Setting Up the Power BI Environment ��� 4

Exploring the Power BI Desktop Interface �� 6

Summary��� 20

Chapter 2: Importing Data into Power BI Desktop �� 21

Importing Data from Relational Databases ��� 21

Importing Data from Text Files �� 35

Importing Data from a Data Feed �� 38

Importing Data from Analysis Services ��� 40

Summary��� 46

Chapter 3: Data Munging with Power Query �� 47

Discovering and Importing Data �� 47

Transforming, Cleansing, and Filtering Data ��� 52

Merging Data �� 58

Appending Data ��� 62

Splitting Data �� 62

Unpivoting Data ��� 63

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Introduction ���xv

iv

Grouping and Aggregating Data �� 65

Inserting Calculated Columns ��� 66

Summary��� 75

Chapter 4: Creating the Data Model �� 77

What Is a Data Model? �� 77

Creating Table Relations ��� 80

Creating a Star Schema �� 86

Understanding When to Denormalize the Data ��� 87

Making a User-Friendly Model �� 89

Summary��� 104

Chapter 5: Creating Calculations with DAX �� 105

What Is DAX? ��� 105

Implementing DAX Operators �� 109

Working with Text Functions ��� 112

Using DAX Date and Time Functions ��� 113

Using Informational and Logical Functions ��� 115

Getting Data from Related Tables �� 117

Using Math, Trig, and Statistical Functions ��� 119

Tips for Creating Calculations in Power BI �� 121

Summary��� 125

Chapter 6: Creating Measures with DAX ��� 127

Measures vs� Attributes �� 127

Creating Common Aggregates �� 129

Mastering Data Context �� 132

Altering the Query Context �� 134

Using Filter Functions ��� 135

Using Variables in DAX �� 143

Summary��� 150

Table of ConTenTs

v

Chapter 7: Incorporating Time Intelligence �� 151

Date-Based Analysis ��� 151

Creating a Date Table �� 153

Time Period–Based Evaluations �� 156

Shifting the Date Context �� 158

Using Single Date Functions ��� 161

Creating Semi-additive Measures ��� 163

Summary��� 171

Chapter 8: Creating Reports with Power BI Desktop �� 173

Creating Tables and Matrices �� 173

Constructing Bar, Column, and Pie Charts��� 179

Building Line and Scatter Charts �� 187

Creating Map-Based Visualizations��� 191

Linking Visualizations in Power BI �� 196

Drilling Through Visualizations �� 201

Summary��� 209

Chapter 9: Publishing Reports and Creating Dashboards in the Power
BI Portal �� 211

Creating a User-Friendly Model��� 211

Publishing Power BI Desktop Files to the Power BI Service ��� 214

Adding Tiles to a Dashboard ��� 218

Sharing Dashboards �� 225

Refreshing Data in Published Reports �� 228

Summary��� 245

Chapter 10: Introducing Power Pivot in Excel �� 247

Setting Up the Power Pivot Environment �� 248

Getting, Cleaning, and Shaping Data ��� 251

Creating Table Relationships ��� 258

Table of ConTenTs

vi

Adding Calculations and Measures ��� 263

Incorporating Time-Based Analysis ��� 266

Summary��� 276

Chapter 11: Data Analysis with Pivot Tables and Charts �������������������������������������� 277

Pivot Table Fundamentals ��� 278

Slicing the Data ��� 280

Adding Visualizations to a Pivot Table ��� 284

Working with Pivot Charts ��� 288

Using Multiple Charts and Tables �� 291

Using Cube Functions ��� 294

Summary��� 304

Chapter 12: Creating a Complete Solution �� 305

Use Case 1: Sales Quota Analysis ��� 305

Use Case 2: Reseller Sales Analysis �� 316

Use Case 3: Sensor Analysis ��� 329

Summary��� 332

Chapter 13: Advanced Topics in Power Query �� 335

Writing Queries with M ��� 335

Creating and Using Parameters �� 339

Creating and Using Functions ��� 344

Summary��� 354

Chapter 14: Advanced Topics in Power BI Desktop �� 355

Using Custom Visuals �� 355

Implementing Geospatial Analysis �� 358

Implementing Row-Based Security��� 361

Creating Templates and Content Packs��� 363

Summary��� 375

Table of ConTenTs

vii

Chapter 15: Advanced Topics in Power BI Data Modeling ������������������������������������ 377

Direct Queries ��� 377

Using Aggregation Tables �� 378

Implementing Dataflows ��� 384

Summary��� 402

Index ��� 403

Table of ConTenTs

ix

About the Author

Dan Clark is a senior business intelligence (BI) and

programming consultant specializing in Microsoft

technologies. He is focused on learning new BI and

data technologies and training others on how to best

implement the technology. Dan has published several

books and numerous articles on .NET programming and BI

development. He is a regular speaker at various developer

and database conferences and user group meetings and

enjoys interacting with the Microsoft communities. In a

previous life, Dan was a physics teacher. He is still inspired by the wonder and awe of

studying the universe and figuring out why things behave the way they do. Dan can be

reached at Clark.drc@gmail.com.

xi

About the Technical Reviewer

Al MacKinnon is a principal customer success manager with

CDW, focusing on Microsoft Cloud solutions with customers

in the Mid-Atlantic region. He has a long background in IT,

including 10 years with Microsoft. That experience includes

technical training, consulting, project management,

solutions architecture, and course development. He’s

held numerous certifications from Novell, Microsoft, and

CompTIA and has been a CISSP since 2003. He gets the most

satisfaction from helping organizations map technology to

business goals and challenges. Al is supported by his wife of

over 30 years, and, when not working, he often discusses our place in the universe with

the author. Finally, he’s gratified that his BA in English is finally starting to pay off.

xiii

Acknowledgments

Once again, thanks to the team at Apress for making the writing of this book an enjoyable

experience. A special thanks goes to my good friend and technical reviewer, Al—thank

you for your attention to detail and excellent suggestions while reviewing this book.

xv

Introduction

Self-service business intelligence (BI)—you have heard the hype, seen the sales demos,

and are ready to give it a try. Now what? You have probably checked out a few web sites

for examples, given them a try, and learned a thing or two, but you are probably still left

wondering how all the pieces fit together and how you go about creating a complete

solution. If so, this book is for you. It takes you step by step through the process of

analyzing data using the tools that are at the core of Microsoft’s self-service BI offering:

Power Query and Power BI Desktop.

Quite often, you need to take your raw data and transform it in some way before

you load it into the data model. You may need to filter, aggregate, or clean the raw data.

I show you how Power Query allows you to easily transform and refine data before

incorporating it into your data model. Next, I show you how to create robust, scalable

data models using Power BI Desktop. Because creating robust Power BI models is

essential to creating self-service BI solutions, I cover it extensively in this book. Next up,

I show you how to use Power BI Desktop to easily build interactive visualizations that

allow you to explore your data to discover trends and gain insight. Finally, I show you

how to deploy your solution to the Power BI Service for your colleagues to use.

I strongly believe that one of the most important aspects of learning is doing. You

can’t learn how to ride a bike without jumping on a bike, and you can’t learn to use the

BI tools without actually interacting with them. Any successful training program includes

both theory and hands-on activities. For this reason, I have included a hands-on activity

at the end of every chapter designed to solidify the concepts covered in the chapter.

I encourage you to work through these activities diligently. It is well worth the effort.

As you start working with Power BI, you will soon realize it is constantly evolving (for

the better). Every month there is an update to Power BI Desktop that introduces new

features and changes to the interface. For this reason, some of the screenshots may not

look exactly like the current version of Power BI. They will be, however, close enough to

figure out what has changed.

Good luck on your journey, and don’t hesitate to provide feedback and suggestions

for improving the experience!

1
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_1

CHAPTER 1

Introducing Power BI
The core of Microsoft’s self-service business intelligence (BI) toolset is the Power BI

data engine (also known as Power Pivot). It is integrated into both Power BI Desktop

and Excel (2010 and later) and forms the foundation on top of which you will build your

analytical reports and dashboards. This chapter provides you with some background

information on why Power BI is such an important tool and what makes it perform so

well. The chapter also provides you with an overview of the Power BI Desktop interface

and gives you some experience using the different areas of the interface.

After reading this chapter, you will be familiar with the following:

• Why you should use Power Pivot

• The xVelocity in-memory analytics engine

• Exploring the Power BI Desktop interface

• Analyzing data in a Power BI report

 Why Use Power BI?
You may have been involved in a traditional BI project consisting of a centralized data

warehouse where the various data stores of the organization are loaded, scrubbed,

and then moved to an online analytical processing (OLAP) database for reporting and

analysis. Some goals of this approach are to create a data repository for historical data,

create one version of the truth, reduce silos of data, clean the company data and make

sure it conforms to standards, and provide insight into data trends through dashboards.

Although these are admirable goals and are great reasons to provide a centralized

data warehouse, there are some downsides to this approach. The most notable is the

complexity of building the system and implementing change. Ask anyone who has tried

to get new fields or measures added to an enterprise-wide data warehouse. Typically,

this is a long, drawn-out process requiring IT involvement along with data steward

committee reviews, development, and testing cycles.

2

What is needed is a solution that allows for agile data analysis without so much

reliance on IT and formalized processes. To solve these problems, many business analysts

have used Excel to create pivot tables and perform ad hoc analysis on sets of data gleaned

from various data sources. Some problems with using isolated Excel workbooks for

analysis are conflicting versions of the truth, silos of data, and data security.

So how can you solve this dilemma of the centralized data warehouse being too rigid

while the Excel solution is too loose? This is where Microsoft’s self-service BI toolset

comes in. These tools do not replace your centralized data warehouse solution but rather

augment it to promote agile data analysis. Using Power BI, you can pull data from the

data warehouse, extend it with other sources of data such as text files or web data feeds,

build custom measures, and analyze the data using powerful visuals to gain insight into

the data. You can create quick proofs of concepts that can be easily promoted to become

part of the enterprise-wide solution. Power BI also promotes one-off data analysis

projects without the overhead of a drawn-out development cycle. When combined

with the Power BI Service portal, reports and dashboards can be shared, secured, and

managed. This goes a long way to satisfying IT’s need for governance without impeding

the business user’s need for agility.

Here are some of the benefits of Power BI:

• Power BI Desktop is a free tool for creating reports.

• Easily integrates data from a variety of sources.

• Handles large amounts of data, upward of tens to hundreds of

millions of rows.

• Includes a powerful Data Analysis Expressions (DAX) language.

• Has data in the model that is read-only, which increases security and

integrity.

When Power BI reports are hosted in the Power BI Service portal, some added

benefits are

• Enables sharing and collaboration

• Scheduling and automation of data refresh

• Can audit changes through version management

• Can secure users for read-only and updateable access

Now that you know some of the benefits of Power BI, let’s see what makes it tick.

Chapter 1 IntroduCIng power BI

3

 The xVelocity In-Memory Analytics Engine
The special sauce behind Power BI is the xVelocity in-memory analytics engine (yes,

that is really the name). xVelocity allows Power BI to provide fast performance on large

amounts of data. One of the keys to this is it uses a columnar database to store the data.

Traditional row-based data storage stores all the data in the row together and is efficient

at retrieving and updating data based on the row key, for example, updating or retrieving

an order based on an order ID. This is great for the order-entry system but not so great

when you want to perform analysis on historical orders (say you want to look at trends

for the past year to determine how products are selling, for example). Row-based storage

also takes up more space by repeating values for each row; if you have a large number

of customers, common names like John or Smith are repeated many times. A columnar

database stores only the distinct values for each column and then stores the row as a

set of pointers back to the column values. This built-in indexing saves a lot of space and

allows for significant optimization when coupled with data-compression techniques that

are built into the xVelocity engine. It also means that data aggregations (like those used

in typical data analysis) of the column values are extremely fast.

Another benefit provided by the xVelocity engine is the in-memory analytics. Most

processing bottlenecks associated with querying data occur when data is read from or

written to a disk. With in-memory analytics, the data is loaded into the RAM memory of

the computer and then queried. This results in much faster processing times and limits

the need to store preaggregated values on disk. This advantage is especially apparent

when you move from 32-bit to 64-bit operating systems and applications, which are the

norm these days.

Another benefit worth mentioning is the tabular structure of the Power BI data

model. The model consists of tables and table relationships. This tabular model

is familiar to most business analysts and database developers. Traditional OLAP

databases such as SQL Server Analysis Server (SSAS) present the data model as

a three- dimensional cube structure that is difficult to work with and requires a

complex query language called Multidimensional Expressions (MDX). I find that in

most cases (but not all), it is easier to work with tabular models and DAX than OLAP

cubes and MDX.

Chapter 1 IntroduCIng power BI

4

 Setting Up the Power BI Environment
Power BI Desktop is a free tool used to create visual analytic reports that can be hosted

in the Power BI portal. You can download it from the Power BI web site at https://

powerbi.microsoft.com/en-us/desktop/. If you sign up for the Power BI portal or have

an Office 365 subscription, you can log into the portal (https://powerbi.microsoft.com)

and download the tool (see Figure 1-1).

Figure 1-1. Downloading Power BI Desktop

Once you download Power BI Desktop, click Run to begin the install. Follow the

installation wizard, which is straightforward. After the install, launch Power BI Desktop.

Click the File tab ➤ Options and Settings ➤ Options to set up the various options for

your development environment (see Figure 1-2).

Chapter 1 IntroduCIng power BI

https://powerbi.microsoft.com/en-us/desktop/
https://powerbi.microsoft.com/en-us/desktop/
https://powerbi.microsoft.com

5

One thing to be aware of is that Microsoft has been releasing monthly updates that

include new features. Make sure you get notified and install these updates when they are

released. You can check which version you have installed by selecting the Diagnostics

tab in the Options window. If you are like me and want to play with upcoming features

that are still in development, you can turn them on in the Preview Features tab in the

Options window.

Now that you have installed and set up the Power BI Desktop development

environment, you are ready to explore the interface.

Figure 1-2. Setting options for Power BI Desktop

Chapter 1 IntroduCIng power BI

6

 Exploring the Power BI Desktop Interface
When you launch Power BI Desktop, you are presented with a startup screen

(see Figure 1-3).

Figure 1-3. The Power BI startup screen

You can use this screen to launch recent reports, start a new report using recent

sources, or start a new report with a new data source. In the middle of the screen, you

can sign into the Power BI Service to collaborate with others or sign up for a 60-day free

trial of Power BI Pro. On the left side of the screen, you can link to the Power BI blog and

the Power BI forums.

Note there is a limited power BI Free version; however this book is based on the
power BI pro version.

Figure 1-4 shows a resent Power BI report opened in the Power BI Desktop.

Chapter 1 IntroduCIng power BI

7

When you first open a report in Power BI Desktop, you see the Report view. There are

two other views you can select—the Data view and the Model view. To switch views, you

use the tabs on the left side of the designer (see Figure 1-5).

Figure 1-4. Creating a report in Power BI Desktop

Figure 1-5. Switching views in the Power BI Desktop

Chapter 1 IntroduCIng power BI

8

If you select the Data view tab, you can see the data tables and the data that has been

imported into the model (see Figure 1-6).

Figure 1-6. Viewing data in the Data view tab

The Model view tab shows the relationships and the filter direction between the

tables in the model (see Figure 1-7).

Chapter 1 IntroduCIng power BI

9

The menus at the top of the designer will change depending on what view you have

selected. Figure 1-8 shows the menus available when you are in the Report view tab. You

will become intimately familiar with the menus in the designer as you progress through

this book. For now, suffice it to say that this is where you initiate various actions such

as connecting to data sources, creating data queries, formatting data, setting default

properties, and editing visual interactions.

Figure 1-7. The Model view tab

Figure 1-8. The Home menu in the Report view

On the right side of the report designer are the Visualizations and the Fields windows

(see Figure 1-9). This is where you select the visualizations you want on the report, add

fields to the visualizations, and set the properties of the visualizations.

Chapter 1 IntroduCIng power BI

10

Figure 1-9. The Visualizations and Fields windows

Chapter 1 IntroduCIng power BI

11

Now that you are familiar with the various parts of the Power BI Desktop report

designer, it’s time to get your hands dirty and complete the following hands-on lab. This

lab will help you become familiar with working in Power BI Desktop.

Note to complete the labs in this book, make sure you download the starter files
from https://github.com/Apress/beginning-power-bi-3ed.

HANDS-ON LAB: EXPLORING POWER PIVOT

In this following lab, you will

• Install power BI desktop

• View the various tabs of power BI desktop

• explore the data using a matrix

 1. go to https://powerbi.microsoft.com/en-us/desktop/ and

download and install power BI desktop.

 2. Launch power BI desktop and dismiss the startup screen.

 3. on the File menu, select options and Settings and then options. You should see

the options window (see Figure 1-10).

Chapter 1 IntroduCIng power BI

https://github.com/Apress/beginning-power-bi-3ed
https://powerbi.microsoft.com/en-us/desktop/

12

Figure 1-10. Viewing the Options settings

Chapter 1 IntroduCIng power BI

13

 8. Click anywhere in the matrix. You should see the visual properties and the field

list on the right side, as shown in Figure 1-12.

 4. on the global data Load tab, make sure the auto date/time for new files option

is unchecked.

 5. View some of the other setting options available.

 6. open the Chapter1Lab1.pbix file located in the LabStarterFiles folder.

 7. You should see a basic matrix showing sales by year and country, as shown in

Figure 1-11.

Figure 1-11. Using a matrix table

Chapter 1 IntroduCIng power BI

14

Figure 1-12. The visual properties and field list

Chapter 1 IntroduCIng power BI

15

 9. In the visual properties, there are drop areas for the rows, columns, and values

referred to as wells. You drag and drop the fields into these wells to create the

matrix.

 10. In the Fields list, expand the dimproductCategory table. Find the

englishproductCategoryname field and drag it to the rows well under the

CalendarYear field.

 11. In the Visualizations window, select the paint roller icon and expand the row

headers tab. turn on the +/- icons for expanding the matrix rows (see Figure 1- 13).

Figure 1-13. Turning on the +/- icons

Chapter 1 IntroduCIng power BI

16

 12. notice that you can now expand and collapse the matrix (see Figure 1-14).

Investigate some of the other format settings available for the matrix.

Figure 1-14. Expanding and collapsing rows in a matrix

 13. Click on an empty area on the page so that the matrix is not selected.

Select the Slicer visual as highlighted in Figure 1-15 and add the

englishprodutCategoryname.

Chapter 1 IntroduCIng power BI

17

 14. rearrange the slicer and the matrix on the page and notice selecting categories

in the slicer filters the matrix.

 15. on the left side of the designer, switch to the data view (see Figure 1-16).

Figure 1-15. Adding a slicer to the report

Chapter 1 IntroduCIng power BI

18

Figure 1-16. Switching to the Data view

 16. explore the data in the different tables using the Fields list on the right side of

the designer.

 17. go to the productalternateKey column in the dimproduct table. notice that it’s

grayed out. this means it’s hidden in the report view. You can verify this by

switching back to the report view and verifying that you cannot see the field in

the field list.

Chapter 1 IntroduCIng power BI

19

 18. In the FactInternetSales table, click the Margin column. notice this is a

calculated column using the Salesamount and the productStandardCost. It has

also been formatted as currency.

 19. there is a measure called total Sales amount in the FactInternetSales table.

Click the measure and note that in the formula bar above the table is the daX

code used to calculate the measure.

 20. on the right side of the designer, switch to the Model view. observe the

relationships between the tables which are indicated by the lines connecting

the tables.

 21. If you hover over the relationship with the mouse pointer, you can see the fields

involved in the relationship, as shown in Figure 1-17.

Figure 1-17. Exploring relationships

 22. take some time to explore the Model, data, and report views. (Feel free to try

to break things!) when you’re done, save the file and close power BI desktop.

Chapter 1 IntroduCIng power BI

20

 Summary
This chapter introduced you to Power BI Desktop. You got a little background into why

Power BI can handle large amounts of data using the xVelocity engine and columnar

data storage. You also got to investigate and gain some experience using the Power BI

Desktop designer. Don’t worry about the details of how you develop the various parts of

the model and reports just yet. That will be explained in detail as you progress through

the book. In the next chapter, you will learn how to get data into the model from various

kinds of data sources.

Chapter 1 IntroduCIng power BI

21
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_2

CHAPTER 2

Importing Data into
Power BI Desktop
One of the first steps in creating the Power BI analytics model is importing data.

Traditionally, when creating a BI solution based on an OLAP cube, you need to import

the data into the data warehouse and then load it into the cube. It can take quite a while

to get the data incorporated into the cube and available for your consumption. This is

one of the greatest strengths of the Power BI model. You can easily and quickly combine

data from a variety of sources into your model. The data sources can be from relational

databases, text files, web services, and OLAP cubes, just to name a few. This chapter

shows you how to incorporate data from a variety of these sources into a Power BI model.

After completing this chapter, you will be able to

• Import data from relational databases

• Import data from text files

• Import data from a data feed

• Import data from an OLAP database

 Importing Data from Relational Databases
One of the most common types of data sources you will run into is a relational database.

Relational database management systems (RDMS) such as SQL Server, Oracle, DB2,

and Access consist of tables and relationships between the tables based on keys. For

example, Figure 2-1 shows a purchase order detail table and a product table. They are

related by the ProductID column. This is an example of a one-to-many relationship.

For each row in the product table, there are many rows in the purchase order detail

table. The keys in a table are referred to as primary and foreign keys. Every table needs

22

a primary key that uniquely identifies a row in the table. For example, the ProductID

is the primary key in the product table. The ProductID is considered a foreign key

in the purchase order detail table. Foreign keys point back to a primary key in a

related table. Note that a primary key can consist of a combination of columns; for

example, the primary key of the purchase order detail table is the combination of the

PurchaseOrderID and the PurchaseOrderDetailID.

Although one-to-many relationships are the most common, you will run into

another type of relationship that is fairly prevalent: the many-to-many. Figure 2-2

shows an example of a many-to-many relationship. A person may have multiple phone

numbers of different types. For example, they may have a business phone and a mobile

phone. You can’t relate these tables directly. Instead, you need to use a junction table

that contains the primary keys from the tables. The combination of the keys in the

junction table must be unique.

Figure 2-1. A one-to-many relationship

Chapter 2 ImportIng Data Into power BI Desktop

23

Notice that the junction table can contain information related to the association;

for example, the PhoneNumber is associated with the customer and phone number type.

A customer cannot have the same phone number listed as two different types.

One nice aspect of obtaining data from a relational database is that the model is

very similar to a model you create in Power BI. In fact, if the relationships are defined in

the database, the Power BI import wizard can detect these and set them up in the model

for you.

The first step to getting data from a relational database is to create a connection. On

the Home tab of Power BI Desktop, there is an External data grouping (see Figure 2-3).

Figure 2-2. Creating a many-to-many relationship using a junction table

Figure 2-3. Setting up a connection

Selecting the Get Data drop-down allows you to connect to some of the more

common data sources such as Excel, SQL Server, Analysis Services, or from another

Power BI model.

Chapter 2 ImportIng Data Into power BI Desktop

24

Figure 2-4. Selecting a data source

Chapter 2 ImportIng Data Into power BI Desktop

25

If you click More in the drop-down, you can see the vast amount of data sources

available to connect to (see Figure 2-5). If you don’t see the one you need, you can

ask the vendor if they have one or if you can use a generic driver such as the ODBC or

OLEDB driver to connect to it.

Figure 2-5. Selecting a data source

Chapter 2 ImportIng Data Into power BI Desktop

26

After selecting a data source, you are presented with a window to enter the

connection information. The connection information depends on the data source you

are connecting to. For most relational databases, the information needed is very similar.

Figure 2-6 shows the connection window for connecting to a SQL Server. You have two

choices for connecting to the data source. With Import mode, a copy of the data is loaded

into the model. With Direct Query mode, a query is issued to the data source every time

the report is filtered or updated. For now, we will use the data import mode. We will

discuss Direct Query mode in Chapter 15.

Figure 2-6. Setting up a connection to a database

Chapter 2 ImportIng Data Into power BI Desktop

27

After connecting to the database, you are presented with a list of tables and views

(see Figure 2-7).

From your perspective, a view and a table look the same. A view is really a stored

query in the database that masks the complexity of the query from you. Views are often

used to show a simpler conceptional model of the database than the actual physical

model. For example, you may need a customer’s address. Figure 2-8 shows the tables

you need to include in a query to get the information. Instead of writing a complex query

to retrieve the information, you can select from a view that combines the information

in a virtual Customer Address table for you. Another common use of a view is to secure

columns of the underlying table. Using a view, the database administrator can hide

columns from various users.

Figure 2-7. Selecting tables and/or views

Chapter 2 ImportIng Data Into power BI Desktop

28

After selecting the tables and views, you can choose to load the data into the model

or edit the data. Selecting Edit will launch the Power Query Editor where you can scrub

the data before you load it into the model. We will cover Power Query in Chapter 3. For

now, you will load the data directly into the model. Once you select Load, you are again

asked if you want to import the data or use direct query (see Figure 2-9).

Figure 2-8. Tables needed to get a customer address

Chapter 2 ImportIng Data Into power BI Desktop

29

After selecting Import mode, you will see a progress screen as the data is loaded into

the model (see Figure 2-10).

Figure 2-9. Choosing how to connect

Chapter 2 ImportIng Data Into power BI Desktop

30

When the wizard closes, you will see the tables and columns listed in the Fields list

pane in Power BI Desktop.

Figure 2-10. Importing the data into the model

Chapter 2 ImportIng Data Into power BI Desktop

31

Note remember that power BI is only connected to the data source when it is
retrieving the data. once the data is retrieved, the connection is closed, and the
data is part of the model.

If you switch to the Diagram View, you will see the tables, and if the table

relationships were defined in the database, you will see the relationships between the

tables. In Figure 2-12, you can see relationships defined between the product tables and

the sales table. You can also create a relationship in the model even though one was not

defined in the data source (more about this later).

Figure 2-11. Tables and fields imported into the model

Chapter 2 ImportIng Data Into power BI Desktop

32

Although selecting from tables and views is an easy way to get data into the model

without needing to explicitly write a query, it is not always possible. At times you may

need to write your own queries; for example, you may want to combine data from several

different tables and no view is available. Another factor is what is supported by the data

source. Some data sources don’t allow views and may require you to supply queries to

extract the data. In these cases, when you get to the screen that asks how you want to

retrieve the data, select the Advanced Options where you can enter an SQL query to

retrieve the data (see Figure 2-13).

Figure 2-12. Table relationships defined in the data source

Chapter 2 ImportIng Data Into power BI Desktop

33

Once you enter the query and select OK, you will see a preview of the data (see

Figure 2-14).

Figure 2-13. Entering an SQL query

Chapter 2 ImportIng Data Into power BI Desktop

34

Note although you may not write the query from scratch, this is where you would
paste in a query written for you or one that you created in another tool such as
microsoft management studio or toaD.

Clicking load will bring the data and table into the model.

Now that you know how to import data from a database, let’s see how you can add

data to the model from a text file.

Figure 2-14. Previewing the data

Chapter 2 ImportIng Data Into power BI Desktop

35

 Importing Data from Text Files
You may often need to combine data from several different sources. One of the most

common sources of data is still the text file. This could be the result of receiving data

as an output from another system; for example, you may need information from your

company’s enterprise resource planning (ERP) system, provided as a text file. You may

also get data through third-party services that provide the data in a comma-separated

value (CSV) format. For example, you may use a rating service to rate customers, and the

results are returned in a CSV file.

Importing data into your model from a text file is similar to importing data from a

relational database table. First, you select the option to get data on the Home tab. You

can choose to import data from a text/csv file (see Figure 2-15).

Chapter 2 ImportIng Data Into power BI Desktop

36

Selecting the text/csv file brings up a screen where you browse to the file and load it.

Once the file is loaded, you will see the sample data and the delimiter used to load the

file (see Figure 2-16). Each text file is considered a table, and the file name will be the

name of the table in the model.

Figure 2-15. Connecting to a text file

Chapter 2 ImportIng Data Into power BI Desktop

37

Another common type of file used as a data source is an Excel file. The main

difference between importing data from a text file and importing data from an Excel file

is that the Excel file can contain more than one table. By default, each sheet is treated as

a table (see Figure 2-17). Once you select the table, you can preview the data just as you

did for a text file.

Figure 2-16. Previewing the data

Chapter 2 ImportIng Data Into power BI Desktop

38

In addition to importing data from a text file, you may need to supplement your data

model using data imported from a data feed. This is becoming a very common way to

exchange data with business partners, and you will see how to do this next.

 Importing Data from a Data Feed
Although text files are one of the most popular ways of exchanging data, data feeds are

becoming an increasingly prevalent way of exchanging data. Data feeds provide the data

through web services, and to connect to the web service, you enter the web address of

the web service (see Figure 2-18).

Figure 2-17. Selecting a table in an Excel file

Chapter 2 ImportIng Data Into power BI Desktop

39

Because the data feed contains not only the data but also the metadata (description

of the data), once you make the connection, it is similar to connecting to a relational

database as shown in Figure 2-19.

Figure 2-18. Connecting to a data feed

Figure 2-19. Previewing data from a data feed

Chapter 2 ImportIng Data Into power BI Desktop

40

Another common data source for a lot of enterprises is an online analytical

processing (OLAP) database. OLAP databases such as SQL Server Analysis Services

(SSAS) are tuned to analyze and aggregate large amounts of data. Power BI is easily able

to connect to Analysis Services allowing you to build reports on top of the data.

 Importing Data from Analysis Services
Many companies have invested a lot of money and effort into creating an enterprise

reporting solution consisting of an SQL Server Analysis Service (SSAS) repository that

feeds various dashboards and score cards. Using Power BI, you can easily integrate data

from these repositories. From the Get Data drop-down on the Home tab (Figure 2-14),

choose the Analysis Services connection. This launches the connection information

window as shown in Figure 2-20. Enter the server name and the database name.

Figure 2-20. Connecting to Analysis Services

Once you are connected to the database, you can build a table by selecting attributes

such as year and month and measures such as sales and margin (see Figure 2-21).

Chapter 2 ImportIng Data Into power BI Desktop

41

Now that you have seen how to import data from various data sources into the Power

BI data model, it is time to get some hands-on experience importing data.

Note the following lab uses an access database. If you are connecting to an
access database for the first time on your computer, you may need to install
access 2013 runtime (https://www.microsoft.com/en-us/download/
details.aspx?id=39358).

Figure 2-21. Selecting attributes and measures

Chapter 2 ImportIng Data Into power BI Desktop

https://www.microsoft.com/en-us/download/details.aspx?id=39358
https://www.microsoft.com/en-us/download/details.aspx?id=39358

42

HANDS-ON LAB: LOADING DATA INTO POWER PIVOT

In the following lab, you will

• Import data from an access database

• Import data from a text file

 1. open power BI Desktop and create a new file called

Chapter2Lab1.pbix.

2. on the home tab in the get external data grouping, click the get Data

drop- down (see Figure 2-22). In the drop-down, select more.

Figure 2-22. Launching the Get Data window

Chapter 2 ImportIng Data Into power BI Desktop

43

3. I n the get Data window, select the access database and click the connect

button (see Figure 2-23).

Figure 2-23. Connecting to an Access database

4. Browse for the northwind.acdb database file in the LabstarterFiles\

Chapter2Lab1 and click open.

5. In the navigator window, you will see a list of tables and views. select the

Customers, orders, and employees table. at the bottom of the window, click the

load button (see Figure 2-24).

Chapter 2 ImportIng Data Into power BI Desktop

44

6. the final table you are going to import is contained in a tab-delimited text file.

on the home tab in the external data section, click the get Data drop-down.

In the data sources list, select text/CsV.

7. Browse to and open the productList.txt file in the LabstarterFiles\Chapter2Lab1

folder. You should see a preview of the data (see Figure 2-25). Load the data

into the model.

Figure 2-24. Selecting tables and views to load

Chapter 2 ImportIng Data Into power BI Desktop

45

8. after both sources have been loaded, select the Data tab in power BI Desktop

and explore the data. Verify all the tables were imported (see Figure 2-26).

Figure 2-25. Loading data from a text file

Chapter 2 ImportIng Data Into power BI Desktop

46

9. when you are finished, save the file and close power BI Desktop.

 Summary
The first step in creating the Power BI model is importing data. In this chapter, you learned

how to import data from a variety of data sources. One of the nice features of importing

data in Power BI is that the experience is similar when you import the data from the various

data sources. You create a connection, preview the data, and then import it into the model.

This works well for importing data that has been cleaned and transformed into a central

repository maintained by IT. However, data is coming increasingly from various sources

both structured and unstructured. Data from these sources often needs to be scrubbed and

transformed before it can be useful and imported into a model. In the next chapter, you will

look at Power Query, a powerful tool that provides an easy-to-use interface for discovering,

cleaning, and transforming data prior to importing it into your Power BI models.

Figure 2-26. Exploring the data

Chapter 2 ImportIng Data Into power BI Desktop

47
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_3

CHAPTER 3

Data Munging with
Power Query
Although you can import data directly into a Power BI model, quite often you need to

clean and shape it (commonly called data munging) before loading it into the model.

This is where Power Query really shines and is a very useful part of your BI arsenal.

Power Query provides an easy-to-use interface for discovering and transforming data.

It contains tools to clean and shape data such as removing duplicates, replacing values,

and grouping data. In addition, it supports a vast array of data sources, both structured

and unstructured, such as relational databases, web pages, and Hadoop, just to name a

few. Once the data is extracted and transformed, you can then easily load it into a Power

BI model.

After completing this chapter, you will be able to

• Discover and import data from various sources

• Cleanse data

• Merge, shape, and filter data

• Group and aggregate data

• Insert calculated columns

 Discovering and Importing Data
Traditionally, if you needed to combine and transform data from various disparate

data sources, you would rely on the IT department to stage the data for you using a tool

such as SQL Server Integration Services (SSIS). This can often be a long, drawn-out

effort of data discovery, cleansing, and conforming the data to a relational structure.

48

Although this type of formal effort is needed to load and conform data for the corporate

operational data store, there are many times when you just want to add data to your

Power BI model from a variety of sources in a quick, intuitive, and agile manner. To

support this effort, you can use Power Query as your self-service BI extract, transform,

and load (ETL) tool.

To launch the Power Query Editor, select the Edit Queries drop-down on the Home

tab and select Edit Queries (see Figure 3-1).

After launching the Query Editor, to create a new query, select the New Source drop-

down on the Home tab (see Figure 3-2).

Figure 3-1. Launching Power Query

Chapter 3 Data Munging with power Query

49

The drop-down shows some common data sources available. To see the complete

list, select the More option (see Figure 3-3).

Figure 3-2. Selecting a new data source

Chapter 3 Data Munging with power Query

50

Once you select a data source, you need to enter the connection information. The

type of data source connection will dictate what information you need to supply to gain

access to the data source. For example, an SQL Database connection requires the server

name and the database name (see Figure 3-4), whereas a CSV file requires the file path.

Figure 3-3. Viewing the list of data sources available

Chapter 3 Data Munging with power Query

51

If you select a data source with multiple tables, you will see a Navigator pane

displayed. Figure 3-5 shows the Navigator pane displayed when you connect to an SQL

Database source.

Figure 3-4. Connecting to an SQL Database

Figure 3-5. Using the Navigator pane to select a table

Chapter 3 Data Munging with power Query

52

After selecting a table, the Query Editor is displayed with a sample of the data (see

Figure 3-6).

Once you have connected to the data source, the next step is to transform, cleanse,

and filter the data before importing it into the data model.

 Transforming, Cleansing, and Filtering Data
After connecting to the data source, you are ready to transform and clean the data.

This is an important step and will largely determine how well the data will support

your analysis effort. Some common transformations that you will perform include

removing duplicates, replacing values, removing error values, and changing data types.

For example, in Figure 3-7 airline flight data has been imported from a CSV file. The

FlightDate column was imported as a text as indicated by the ABC next to the column

name, but you need it to be a Date column in your model.

Figure 3-6. Viewing sample data in the Query Editor

Chapter 3 Data Munging with power Query

53

Often you need to replace values from a source system so that they sync together in

your model. For example, a carrier listed as VX in the CSV file has a value of VG in your

existing data. You can easily replace these values as the data is imported by selecting

the column and then selecting the Replace Values transformation in the menu. This

launches a window in which you can enter the values to find and what to replace them

with (see Figure 3-8).

Figure 3-7. Changing the data type of a column

Chapter 3 Data Munging with power Query

54

When loading data from a source, another common requirement is filtering out

unnecessary columns and rows. To remove columns, select the Choose Columns drop-

down on the Home tab and select the columns you want (see Figure 3-9).

Figure 3-8. Replacing values in a column

Chapter 3 Data Munging with power Query

55

Figure 3-9. Filtering columns

Chapter 3 Data Munging with power Query

56

You can filter out rows by selecting the drop-down beside the column name and

entering a filter condition. The type of filtering depends on the data type. Figure 3-10

shows the filtering available for a numeric data type.

Figure 3-10. Filtering rows

Chapter 3 Data Munging with power Query

57

As you apply the data transformations and filtering, the Query Editor lists the steps

you have applied. This allows you to organize and track the changes you make to the

data. You can rename, rearrange, and remove steps by right-clicking the step in the list

(see Figure 3-11).

Figure 3-11. Managing the query steps

Chapter 3 Data Munging with power Query

58

After cleansing and transforming the data, you may need to combine data from

several sources into one table in your data model or expand data contained in a column.

 Merging Data
There are times when you may need to merge data from several tables and/or sources

before you load the data into the model—for example, if you have codes in a table that

link to another lookup table that contains the full value for the field. One way to deal

with this is to import both tables into your model and create a link between the tables

in the Power BI model. Another option is to merge the tables together before importing

the data. For example, in the flight data you saw earlier, there is a UniqueCarrier column

that contains carrier codes. You can merge these with another CSV file that contains

the carrier codes and the carrier name, so we can use the carrier names in our reports

instead of the code. First, create and save a query for each set of data with the Query

Editor. For the lookup table, you can uncheck the Enable Load by right-clicking the

query in the Queries list window (see Figure 3-12). You do, however, still want the query

to run when the report refreshes.

Chapter 3 Data Munging with power Query

59

Next, select the main query and click the Merge Queries drop-down on the Home

tab. This will launch the Merge window (see Figure 3-13), where you select the lookup

query and the columns that link the data together.

Figure 3-12. Disable loading into the Power BI model

Chapter 3 Data Munging with power Query

60

Once you merge the queries, you will see a new column containing a table type (see

Figure 3-14).

Figure 3-13. Merging data from two queries

Chapter 3 Data Munging with power Query

61

By expanding this column, you can choose which columns to keep (see Figure 3-15).

Figure 3-14. Expanding the merged table

Figure 3-15. Choosing columns to keep

Chapter 3 Data Munging with power Query

62

 Appending Data
Along with merging data from lookup tables, you may also need to append data from

two different sources. For example, say you have flight data for each year separated into

different source files or tables and want to combine multiple years into the same table.

In this case, you would create two similar queries, each using a different source. First,

open one of the queries in the Query Editor and select the Append Queries button on the

Home tab. You can then select the other query as the table to append (see Figure 3-16).

 Splitting Data
Sometimes a source may provide you with data in a column that needs to be split up

among several columns. For example, you may need to split the city and state, or the

first name and last name. To do that, select the column in the Query Editor, and on the

Home tab, choose Split Column. You can either split the column by a delimiter or by the

number of characters (see Figure 3-17).

Figure 3-16. Appending queries

Chapter 3 Data Munging with power Query

63

 Unpivoting Data
Another scenario you may run into is when the data source contains data that is not in

tabular form, but rather in a matrix, as in Figure 3-18.

Figure 3-17. Splitting a column using a delimiter

Figure 3-18. Using a matrix as a data source

To import this data into the data model, you will need to unpivot the data to get it in

a tabular form. In the Query Editor, select the columns that need to be unpivoted (see

Figure 3-19).

Chapter 3 Data Munging with power Query

64

On the Transform tab, select the Unpivot Columns transform. Once the data is

unpivoted, you will get an Attribute column from the original column headers and a

Value column (see Figure 3-20). You should rename these columns and change the data

type before importing the data.

Figure 3-19. Selecting columns to unpivot

Figure 3-20. Resulting rows from the unpivot transformation

Chapter 3 Data Munging with power Query

65

As you bring data into the model, you often don’t need the detail-level data; instead,

you need an aggregate value at a higher level—for example, product level sales or

monthly sales. Using Power Query, you can easily group and aggregate the data before

importing it.

 Grouping and Aggregating Data
The need to group and aggregate data is a common scenario you may run into when

importing raw data. For example, you may need to roll the data up by month or sales

territory, depending on the analysis you want. To aggregate and group the data in the

Query Editor, select the column you want to group by and select the Group By transform

in the Home tab. You are presented with a Group By window (see Figure 3-21).

Figure 3-21. Grouping data in Power Query

Chapter 3 Data Munging with power Query

66

You can group by multiple columns and aggregate multiple columns using the

standard aggregate functions. Figure 3-22 shows some of the results from grouping by

origin and carrier and aggregating the average and maximum departure delays.

The final requirement you may run into as you import data using Power Query is

inserting a calculated column. This is a little more advanced because you need to write

code, as you will see in the next section.

 Inserting Calculated Columns
Until now you have been building and executing queries using the visual interfaces

provided by Power Query. Behind the scenes, however, the Power Query Editor was

creating scripts used to execute the queries. A Power Query script is written in a language

called M. As you have seen, you can get a lot of functionality out of Power Query without

ever having to know about M or learn how it works. Nevertheless, at the very least, you

should know it is there and that it is what gets executed when you run the query. If you

navigate to the View tab in the Query Editor, you will see an option to open the Advanced

Editor, which will display the M code used to build the query (see Figure 3-23).

Figure 3-22. Grouping and aggregating flight data

Chapter 3 Data Munging with power Query

67

You can use the Advanced Editor to write the query directly with M, thereby exposing

some advanced data processing not available in the visual interface tools.

If you want to insert a calculated column into the query, you need to use the M

functions. On the Add Column tab of the Query Editor, you can duplicate columns, insert

an index column, merge columns, and insert a custom column. When you select the Add

Custom Column option, you are presented with an Add Custom Column editor where

you insert the M function used to create the column. For example, in Figure 3-24, we are

checking to see if the Carrier column has a Q in the name.

Figure 3-23. Building a query with M

Chapter 3 Data Munging with power Query

68

Figure 3-25 shows the results of the query with the custom column added.

Figure 3-24. Creating columns using M formulas

Chapter 3 Data Munging with power Query

69

So, if you need to create columns using Power Query before inserting the data into

the Power Pivot model, you use M code. If you create the columns after importing the

data into the Power Pivot model, you use DAX code (covered in later chapters).

Now that you have seen how Power Query works, it is time to get some hands-on

experience using it to import, cleanse, and shape data.

HANDS-ON LAB: IMPORTING AND SHAPING DATA WITH POWER QUERY

in the following lab, you will

• Create a query to import data

• Filter and transform data

• append and shape data

• group and aggregate data

Figure 3-25. Displaying the results of the query

Chapter 3 Data Munging with power Query

70

 1. in the LabStarterFiles\Chapter3Lab1 folder, create a power Bi Desktop file

called Chapter3Lab1.pbix.

 2. on the home tab, select edit Queries to launch the power Query editor.

 3. on the home tab, select the new Source drop-down and choose the text/

CSV option. navigate to the Flightperformance_2012_10.csv file in the

LabStarterFiles\Chapter3Lab1 folder. Click oK to load the query into the editor.

after loading the file, you should see the Query editor window with airline delay

data, as shown in Figure 3-26.

Figure 3-26. The Query Editor window with delay data

 4. in the Query Settings pane, rename the query to FlightDelays.

 5. in the applied Steps list, if the Query editor did not automatically add an

item labeled “promoted headers” that transformed the first row to headers, add

it now.

Chapter 3 Data Munging with power Query

71

 6. Check the types of each column to see whether the Query editor updated the

FlightDate to a Date data type and the number type columns (“Flightnum” for

example) to a number data type. if it did not, change them now by right-clicking

the column headers and choosing Change type from the context menu.

 7. on the home tab, select Choose Columns. Clear all the selections and then

select just the Carrier, origin, originCityname, and DepDelay columns.

 8. use the DepDelay column and apply a filter so that the query only pulls rows

that have a flight departure delay of greater than 15 minutes. Choose the drop-

down arrow in the column heading and use the “number filters” option.

 9. to pull data from another month, complete steps 2–8 for the

Flightperformance_2012_11.csv file, except this time, name the query

FlightDelays2.

 10. in the Queries pane on the left side of the editor, right-click the query

FlightDelays2 and uncheck enable load (see Figure 3-27).

Figure 3-27. Disabling loading the query to the model

Chapter 3 Data Munging with power Query

72

 11. Select the FlightDelays query in the Queries list.

 12. Select the append Queries option in the Combine section of the home tab.

append the FlightDelays2 query to the FlightDelays query.

 13. note that the originCityname contains both a city and a state. to split that

column into two, select the originCityname column, and on the transform tab,

select Split Column. Split it into two columns, using the comma as the delimiter.

 14. rename the two resulting columns originCity and originState.

 15. By right-clicking the originCity column, replace west palm Beach/palm Beach

in the originCity column with just palm Beach by choosing replace values.

 16. on the home tab, select the new Source drop-down and choose the text/CSV

option. Connect to the Flightperformance_2012_12.csv in the LabStarterFiles\

Chapter3Lab1 folder.

 17. in the Query Settings pane, rename the query to DelaySummary.

 18. Keep the Carrier, origin, and DepDelay columns and remove the rest.

 19. Filter out delays that are less than 15 minutes.

 20. Find the average delay and max delay grouping by the origin and carrier (see

Figure 3-28). note that you will need to click the “advanced” radio button to be

able to add more than one grouping and aggregation.

Chapter 3 Data Munging with power Query

73

 21. on the transform tab, use rounding to round down the aveDelay to the nearest

minute.

 22. add a query called Carriers that gets the code and description from the

Carriers.csv file. Verify that the first row was promoted as a header for the data.

 23. Select the DelaySummary query and select the Merge Queries option on the

home tab. using the Carriers query, merge the Description column matching

the Carrier column in the DelaySummary query with the Code column in the

Carriers query (see Figure 3-29).

Figure 3-28. Grouping by origin and carrier

Chapter 3 Data Munging with power Query

74

 24. expand the Carriers column and select the Description field (see Figure 3-30).

Figure 3-29. Merging data from two queries

Chapter 3 Data Munging with power Query

75

 25. rename the Carrier column to CarrierCode and the Description column to Carrier.

 26. Select Close & apply on the home tab.

 27. Verify that the Carriers, DelaySummary, and FlightDelays tables were added to

the power Bi model.

 28. Save the file and close power Bi Desktop.

 Summary
Power Query is a very helpful tool you can use to get data from many different types

of sources. In this chapter, you learned how to employ Power Query to do some data

munging—shaping, cleansing, and transforming data, applying intuitive interfaces

without having to use code. Power Query builds the code for you but doesn’t hide it from

you. If you need to alter or enhance the code, you can make use of the Advanced Editor

view. Although this chapter only touched on the M query language, we will return to this

topic in Chapter 13, where we will dive deeper into it.

Figure 3-30. Expanding the Carriers table

Chapter 3 Data Munging with power Query

76

Now that you know how to get, clean, and shape data, the next step is to understand

what makes a good model. This is very important when dealing with data in Power

BI. A good model will make Power BI perform incredibly fast and allow you to analyze

the data in new and interesting ways. A bad model will cause Power BI to perform very

slowly and at worst give distorted results when performing the data analysis. The next

chapter guides you through the process of creating solid models on which to build your

analytical reports and dashboards.

Chapter 3 Data Munging with power Query

77
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_4

CHAPTER 4

Creating the Data Model
Now that you know how to get data into the Power BI model, the next step is to

understand what makes a good model. This is very important when dealing with data

in Power BI. A good model will make Power BI perform amazingly fast and allow you

to analyze the data in new and interesting ways. A bad model will cause Power BI to

perform very slowly and at worst give misleading results when performing the data

analysis. This chapter guides you through the process of creating a solid model that

will become the foundation for your data analysis. In addition, you will look at how

to present a user-friendly model to ease the development of reports. This includes

renaming tables and fields, presenting appropriate data types, and hiding extraneous

fields.

After completing this chapter, you will be able to

• Explain what a data model is

• Create relationships between tables in the model

• Create and use a star schema

• Understand when and how to denormalize the data

• Create and use hierarchies

• Make a user-friendly model

 What Is a Data Model?
Fundamentally a data model is made up of tables, columns, data types, and table

relations. Typically, data tables are constructed to hold data for a business entity; for

example, customer data is contained in a customer table and employee data is contained

in an employee table. Tables consist of columns that define the attributes of the entity.

For example, you may want to hold information about customers such as name, address,

78

birth date, household size, and so on. Each of these attributes has a data type that

depends on what information the attribute holds—the name would be a string data type,

the household size would be an integer, and the birth date would be a date. Each row

in the table should be unique. Take a customer table, for example; if you had the same

customer in multiple rows with different attributes, say birth date, you would not know

which was correct.

In the previous example, you would know that one of the rows was incorrect because

the same person could not have two different birthdays. There are many times, however,

when you want to track changes in attribute values for an entity. For example, a product’s

list price will probably change over time. To track the change, you need to add a time

stamp to make the row unique. Then each row can be identified by the product number

and time stamp, as shown in Figure 4-1.

Figure 4-1. Using a time stamp to track changes

Once you have the tables of the model identified, it is important that you recognize

whether the tables are set up to perform efficiently. This process is called normalizing

the model. Normalization is the process of organizing the data to make data querying

easier and more efficient. For example, you should not mix attributes of unrelated

entities together in the same table—you would not want product data and employee

data in the same table. Another example of proper normalization is to not hold more

than one attribute in a column. For example, instead of having one customer address

column, you would break it up into street, city, state, and zip code. This would allow you

to easily analyze the data by state or by city. The spreadsheet shown in Figure 4-2 shows

a typical non-normalized table (this is one continuous table split to visualize it on the

page). If you find that the data supplied to you is not sufficiently normalized, you can use

Power Query to break the data up into multiple tables that you can then relate together

in your model.

Chapter 4 Creating the Data MoDel

79

Once you are satisfied the tables in your model are adequately normalized, the next

step is to determine how the tables are related. For example, you might need to relate

the customer table, sales table, and product table to analyze how various products are

selling by age group. The way you relate the different tables is by using keys. Each row in

a table needs a column or a combination of columns that uniquely identifies the row.

This is called the primary key. The key may be easily identified, such as a sales order

number or a customer number that has been assigned by the business when the data

was entered. Sometimes you will need to do some analysis of a table to find the primary

key, especially if you get the data from an outside source. For example, you may get data

that contains potential customers. The fields are name, city, state, zip, birth date, and so

on. You cannot just use the name as the key because it is very likely that you have more

than one customer with the same name. If you use the combination of name and city,

you have less of a chance of having more than one customer identified by the same key.

As you use more columns, such as zip and birth date, your odds get even better.

When you go to relate tables in the model, the primary key from one table becomes

a foreign key in the related table. For example, to relate a customer to their sales, the

customer key needs to be contained in the sales table where it is considered a foreign

key. When extracting the data, the keys are used to get the related data. By far, the best

type of key to use for performance reasons is a single column integer. For this reason, a

lot of database tables are designed with a surrogate key. This key is an integer that gets

assigned to the record when it is loaded. Instead of using the natural key, the surrogate is

used to connect the tables. Figure 4-3 shows a typical database table containing both the

surrogate key (CustomerKey) and the natural key (CustomerAlternateKey).

Figure 4-2. A non-normalized table

Chapter 4 Creating the Data MoDel

80

It is important that you are aware of the keys used in your sources of data. If you can

retrieve the keys from the source, you are much better off. This is usually not a problem

when you are retrieving data from a relational database, but if you are combining data

from different sources, make sure you have the appropriate keys.

Once you have the keys between the tables identified, you are ready to create the

relationships in the Power BI model.

 Creating Table Relations
There are a few rules to remember when establishing table relationships in a Power BI

model. First, you can’t use composite keys in the model. If your table uses a composite

key, you will need to create a new column by concatenating the composite columns

together and using this column as the key. Second, you can only have one active

relationship path between two tables, but you can have multiple inactive relationships.

Third, relationships are usually one-to-many; in other words, creating a relationship

between the customer table (one side) and the sales table (many sides) is common and

works well. Sometimes however, you need to create a many-to-many relationship. For

example, consider customers and products, the customer can buy many products, and

the same product can be bought by many customers. In these cases, it is a best practice

to create a junction table to connect the tables together.

To create a relationship between two tables in the Power BI model, you open Power

BI Desktop and switch to the Model view. In the Home tab, select Manage relationships.

This launches the Manage relationships window (see Figure 4-4).

Figure 4-3. A table containing both a surrogate key and a natural key

Chapter 4 Creating the Data MoDel

81

This window shows the relationships currently defined in the model. You can create

a new relationship, edit an existing relationship, and delete a relationship. Be careful

selecting the Autodetect button; this may overwrite the existing relationships and could

give erroneous results.

Selecting the New button in the Manage relationships window launches the Create

relationship window (see Figure 4-5). Choose the related tables and the key column

in each table. Figure 4-5 shows creating a relationship between the FactInternetSales

table and the DimProduct table. Note that the “ProductKey” column in each table is

highlighted to indicate the relationship. By default, the first relationship created between

the tables is marked as the active relationship.

Figure 4-4. The Manage relationships window

Chapter 4 Creating the Data MoDel

82

Figure 4-6 shows the resulting relationship in the Diagram View. If you hover

the mouse over the relationship arrow, the two key columns of the relationship are

highlighted. The ∗ indicates the many side of the relationship. For each row in the

DimProduct table, there can be many related rows in the FactInternetSales table.

Figure 4-5. Creating a table relationship

Chapter 4 Creating the Data MoDel

83

You can create more than one relationship between two tables, but remember, only

one can be the active relationship. If you try to make two active relationships, you’ll get

an error like the one shown in Figure 4-7.

Figure 4-6. Viewing a relationship in the Diagram View

Figure 4-7. Trying to create a second active relationship between two tables

Sometimes the active relationship is not so obvious. Figure 4-8 shows an active

relationship between the Sales table and the Calendar table and another one between

the Sales table and the Promotions table. There is also an inactive relationship between

the Promotions table and the Calendar table. If you try to make this one active, you get

the same error message shown in Figure 4-7. This is because you can trace an active path

from the Calendar table to the Sales table to the Promotions table.

Chapter 4 Creating the Data MoDel

84

Another common error you may run into is when you try to create a relationship

between two tables and the key is not unique in at least one of the tables. Figure 4-9

shows a Flights table and a Carriers table that both contain duplicate Carrier Codes.

Figure 4-8. An indirect active relationship

Chapter 4 Creating the Data MoDel

85

When you try to create a relationship between the tables, you get the warning shown

in Figure 4-10.

Figure 4-9. The Carriers and Flights tables

Figure 4-10. Getting a duplicate value warning

In this example, the Code column in the Carriers table is supposed to be unique, but

it turns out there are duplicates. Even though Power BI can make this a many-to-many

relationship, this is not what we want. To fix this, you would have to change the query for

the Carriers table data to ensure that you are not getting duplicates.

Now that you know how to create table relationships in the model, you are ready to

look at the benefits of using a star schema.

Chapter 4 Creating the Data MoDel

86

 Creating a Star Schema
When creating a data model, it is important to understand what the model is being used

for. The two major uses of databases are for capturing data and for reporting/analyzing

the data. The problem is that when you create a model for efficient data capture, you

decrease its efficiency to analyze the data. To combat this problem, many companies

split off the data-capturing database from their reporting/analysis database. Fortunately,

when creating the data model in Power BI, we only need to tune it for reporting.

One of the best models to use when analyzing large sets of data is the star schema.

The star schema consists of a central fact table surrounded by dimension tables, as

shown in Figure 4-11.

Figure 4-11. A typical star schema

Chapter 4 Creating the Data MoDel

87

The fact table contains quantitative data related to the business or process. For

example, the Sales table in Figure 4-11 contains measurable aspects of a sale, such as

total costs, sales amount, and quantity. Fact tables usually contain many rows and have

a date or time component that records the time point at which the event occurred. The

dimension tables contain attributes about the event. For example, the Date table can

tell you when the sale occurred and allows you to roll up the data to the month, quarter,

or year level. The Product table contains attributes about the product sold, and you can

look at sales by product line, color, and brand. The Reseller table contains attributes

about the store involved in the sale. Dimension tables usually don’t contain as many

rows as fact tables but can contain quite a few columns. When you ask a question like

“Which bikes are selling the best in the various age groups?”, the measures (sales dollar

values) come from the fact table, whereas the categorizations (age and bike model) come

from the dimension tables.

The main advantage of the star schema is that it provides fast query performance

and aggregation processing. The disadvantage is that it usually requires a lot of

preprocessing to move the data from a highly normalized transactional system to a

more denormalized reporting system. The good news is that your business may have

a reporting system feeding a traditional online analytical processing (OLAP) database

such as Microsoft’s Analysis Server or IBM’s Cognos. If you can gain access to these

systems, they are probably the best source for your core business data.

To create a star schema from your source data systems, you may have to perform

some data denormalization, which is covered in the following section.

 Understanding When to Denormalize the Data
Although transactional database systems tend to be highly normalized, reporting

systems are denormalized into the star schema. If you don’t have access to a reporting

system where the denormalization is done for you, you will have to denormalize the data

as you load it into the Power BI model. As an example, Figure 4-12 shows the tables that

contain customer data in the Adventureworks transactional sales database.

Chapter 4 Creating the Data MoDel

88

To denormalize the customer data into your model, you need to create a query that

combines the data into a single customer dimension table. If you are not familiar with

creating complex queries, the easiest way to do this is to have the database developers

create a view you can pull from that combines the tables for you. If the query isn’t too

complex, you can create it yourself using Power Query. For example, Figure 4-13 shows a

Customer table and a Geography table.

Figure 4-12. A highly normalized schema

Chapter 4 Creating the Data MoDel

89

You can combine these into one customer dimension table using the merge function

in Power Query. Although you do not have to be a query expert to get data into your

Power BI model, it is very beneficial to know the basics of querying the data sources,

even if it just helps to ask the right questions when you talk to the database developers.

 Making a User-Friendly Model
As you are creating your model, one thing to keep in mind is making the model easy and

intuitive to use. Chances are that the model may get used by others for analysis. There

are properties and settings you can use that will make your models more user-friendly.

One of the most effective adjustments you can make is to rename the tables and

columns. Use names that make sense for business users instead of a cryptic naming

convention that only makes sense to the database developers. Another good practice is

to make sure the data types and formats of the columns are set correctly. A field from a

text file may come in typed as a string when in reality it is numeric data. In addition, you

can hide fields that are of no use to the user, such as the surrogate keys used for linking

the tables.

Figure 4-13. Combining customer and customer location data

Chapter 4 Creating the Data MoDel

90

A common requirement is to change the sort order of a column from its natural

sorting. The most common example is the months of the year. Because they are text

by default, they are sorted alphabetically. In reality, you want them sorted by month

number. To fix this, you can sort one column by any other column in the table (see

Figure 4-14). This is a nice feature and allows you to create your own business-related

custom sorting.

Figure 4-14. Sorting one column by another column

Chapter 4 Creating the Data MoDel

91

Another useful feature when analyzing data is using hierarchies. Hierarchies define

various levels of aggregations. For example, it is common to have a calendar-based

hierarchy based on year, quarter, and month levels. An aggregate like sales amount is

then rolled up from month to quarter to year. Another common hierarchy might be from

department to building to region. You could then roll cost up through the different levels.

Creating hierarchies in a Power Pivot model is very easy. In the Field list window, select

the column that you want as the top level of the hierarchy. Right-click the column and

select New hierarchy (see Figure 4-15).

Figure 4-15. Creating a hierarchy

Chapter 4 Creating the Data MoDel

92

Next in the Field list, right-click the column that will be the next level in the

hierarchy. Select Add to hierarchy and select the hierarchy in the list (see Figure 4-16).

Figure 4-17. Selecting a hierarchy in the field list

After creating the hierarchy, you will see it in the field list and can use it on your

reports (see Figure 4-17).

Figure 4-16. Adding levels to a hierarchy

Chapter 4 Creating the Data MoDel

93

Creating hierarchies is one way to increase the usability of your model and help users

instinctively gain more value in their data analysis. There are many other techniques

you can use to create good models for the various client tools. We will revisit this topic in

more detail in Chapter 9.

The following hands-on lab will help you solidify the topics covered in this chapter.

HANDS-ON LAB: CREATING A DATA MODEL IN POWER PIVOT

in the following lab, you will

• Create table relations

• Denormalize data

• Set up a hierarchy

• Make a user-friendly model

 1. open power Bi Desktop and create a new file called Chapter4lab1.pbix.

 2. Connect to the adventureworks.accdb file in the labStarterFiles\Chapter4lab1

folder. (if you get an error, refer to this page to troubleshoot.)

 3. once connected, use the “edit” button to launch power Query.

 4. in the power Query window, select the tables and fields listed and import the

data. tip: You can use the “recent Sources” button to pull the second and third

tables from the same source file.

Chapter 4 Creating the Data MoDel

94

Source Table Name Friendly Name Fields (Columns)

DimDate Date DateKey

FullDatealternateKey

englishMonthname

MonthnumberofYear

CalendarQuarter

CalendarYear

DimCustomer Customer CustomerKey

BirthDate

MaritalStatus

gender

Yearlyincome

totalChildren

houseownerFlag

numberofCarsowned

FactinternetSales internet Sales productKey

orderDateKey

ShipDateKey

CustomerKey

SalesterritoryKey

Salesordernumber

Salesorderlinenumber

orderQuantity

Unitprice

totalproductCost

Salesamount

 5. Select Close & apply to load the data into the model.

 6. Switch to the Data view in power Bi Desktop; rename and/or hide the columns

indicated in the table. to rename or hide a column, right-click it and choose

rename or hide From report view in the context menu. (note: You could change

the column names in power Query instead.)

Chapter 4 Creating the Data MoDel

95

Table Column Friendly Name Hide

Date DateKey X

FullDatealternateKey Date

englishMonthname Month

MonthnumberofYear Month no X

CalendarQuarter Quarter

CalendarYear Year

Customer CustomerKey X

BirthDate Birth Date

MaritalStatus Marital Status

gender gender

Yearlyincome income

totalChildren Children

houseownerFlag home owner

numberofCars Cars

internet Sales productKey X

orderDateKey X

ShipDateKey X

CustomerKey X

SalesterritoryKey X

Salesordernumber order number

Salesorderlinenumber order line number

orderQuantity Quantity

Unitprice Unit price

totalproductCost product Cost

Salesamount Sales amount

Chapter 4 Creating the Data MoDel

96

 7. Switch to the Model view. You should see the Date, Customer, and internet

Sales tables. the Customer table and the internet Sales table have a

relationship defined between them. this was inferred by power Bi based on the

column names and data type.

 8. Drag the DateKey from the Date table and drop it on the orderDateKey in

the internet Sales table. Similarly, create a relationship between the DateKey

and the ShipDateKey. Double-click this second relationship to launch the edit

relationship window (see Figure 4-18). try to make it an active relationship. You

should get an error because you can only have one active relationship between

two tables in the model. after reviewing the error, click “Cancel.”

Figure 4-18. Creating the table relationship

Chapter 4 Creating the Data MoDel

97

 9. now it’s time to add some product information to our data set. on the home

tab, select recent Sources and choose the adventureworks database

(see Figure 4-19).

Figure 4-19. Connecting to the Adventureworks database

 10. in the navigator window, select the Dimproduct, DimproductCategory, and the

DimproductSubcategory tables and click the edit button (see Figure 4-20).

Chapter 4 Creating the Data MoDel

98

 11. Using the power Query designer, select the productKey, productalternateKey,

productSubCategoryKey, WeightUnitMeasureCode, SizeUnitMeasureCode,

englishproductname, listprice, Size, Sizerange, Weight, and Color columns

from the Dimproduct query. Change the name of the query to Product.

 12. Merge the DimproductSubcategory to the Product query using a left outer

join (see Figure 4-21). Start by selecting the product query and then clicking

“Merge queries” on the toolbar.

Figure 4-20. Selecting additional tables

Chapter 4 Creating the Data MoDel

99

 13. expand the resulting column and select the englishproductSubcategoryname

and the productCategoryKey columns. Uncheck the Use original column name

as prefix check box (see Figure 4-22).

Figure 4-21. Merging queries

Chapter 4 Creating the Data MoDel

100

 14. repeat the previous steps to merge the englishproductCategoryname from the

DimproductCategory query into the Product query.

 15. now that the queries have been merged, you can remove the

productSubcategoryKey and the productCategoryKey columns from the

Product Query.

Figure 4-22. Selecting merged columns

Chapter 4 Creating the Data MoDel

101

 16. rename the columns as follows:

Table Column Friendly Name

product productKey

productalternateKey product Code

WeightUnitMeasureCode Weight UofM Code

SizeUnitMeasureCode Size UofM Code

englishproductname product name

listprice list price

Size

Sizerange Size range

Weight

Color

englishproductCategoryname Category

englishproductSubcategoryname Subcategory

 17. in the Queries list, right-click the DimproductCategory query and uncheck the

enable load (see Figure 4-23).

Chapter 4 Creating the Data MoDel

102

Figure 4-23. Disable query loading

 18. repeat step 16 for the DimproductSubcategory query.

 19. Choose “Close & apply.”

 20. after loading the product data into the power Bi model, hide the productKey

column in the report view.

 21. Create a relationship between the internet Sales and the product tables using

the productKey (power Bi may have already added this automatically). Your final

diagram should look like Figure 4-24.

Chapter 4 Creating the Data MoDel

103

 22. to create a hierarchy, switch back to the Data view and select the Category

column in the product table. right-click the column and select new hierarchy

(see Figure 4-25).

Figure 4-24. Viewing the data model relationships

Chapter 4 Creating the Data MoDel

104

 23. add the Subcategory field to the hierarchy by right-clicking that field and

selecting “add to hierarchy.”

 24. Create a Calendar hierarchy named Calendar in the Date table using Year,

Quarter, and Month.

 25. Select the Month column in the Date table and set its Sort by Column to

the Month no column. remember, the “Sort by Column” button is on the

“Modeling” tab.

 26. When done, save and close power Bi Desktop.

 Summary
When working in Power BI, it is very important to understand what makes a good model.

A good model will make Power BI perform incredibly fast and allow you to easily analyze

large amounts of data. This chapter guided you through the process of creating a solid

model that will become the foundation for your data analysis. In addition, you saw how

to present a user-friendly model to client tools.

Now that you have a solid foundation for your model, you are ready to extend the model

with custom calculations. The next chapter introduces the Data Analysis Expressions (DAX)

language and explains how to create calculated columns in the data model. It includes plenty

of examples to help you create common calculations in the model.

Figure 4-25. The Sales Territory hierarchy

Chapter 4 Creating the Data MoDel

105
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_5

CHAPTER 5

Creating Calculations
with DAX
Now that you know how to create a robust data model to base your analysis on, the next

step is to add to the model any calculations required to aid your exploration of the data. For

example, you may have to translate code values into meaningful descriptions or parse out

a string to obtain key information. This is where Data Analysis Expressions (DAX) comes

into play. This chapter introduces you to DAX and shows you how to use DAX to create

calculated columns to add to the functionality of your model.

After completing this chapter, you will be able to

• Use DAX to add calculated columns to a table

• Implement DAX operators

• Work with text functions in DAX

• Use DAX date and time functions

• Use conditional and logical functions

• Get data from a related table

• Use math, trig, and statistical functions

 What Is DAX?
DAX is a formula language used to create calculated columns and measures in the Power

BI model. It is a language developed specifically for the tabular data model Power BI

is based on. If you are familiar with Excel’s formula syntax, you will find that the DAX

syntax is very familiar. In fact, some of the DAX formulas have the same syntax and

functionality as their Excel counterparts. The major difference—and one that you need

106

to wrap your head around—is that Excel formulas are cell based, whereas DAX is column

based. For example, if you want to concatenate two values in Excel, you would use a

formula like the following:

=A1 & " " & B1

where A1 is the cell in the first row and first column and B1 is the cell in the second

column of the first row (see Figure 5-1).

Figure 5-1. Entering a formula in Excel

This is very similar to the DAX formula:

=[First Name] & " " & [Last Name]

where First Name and Last Name are columns in a table in the model (see Figure 5- 2).

Chapter 5 Creating CalCulations with DaX

107

The difference is that the DAX formula is applied to all rows in the table, whereas the

Excel formula only works on the specific cells. In Excel you need to re-create the formula

in each row.

What this means is that although you can do something like this in Excel

=A1 & " " & B2

where you are taking a cell from the first row and concatenating a cell from the second

row (see Figure 5-3), you can’t do that in DAX.

Figure 5-2. Entering a DAX formula in Power BI

Chapter 5 Creating CalCulations with DaX

108

When creating DAX formulas, it is important to consider the data types and any

conversions that may take place during the calculations. If you don’t take these into

account, you may experience errors in the formula or unexpected results. The supported

data types in the model are whole number, decimal number, currency, Boolean, text, and

date. DAX also has a table data type that is used in many functions that take a table as an

input value and return a table.

When you try to add a numeric data type with a text data type, you get an implicit

conversion. If DAX can convert the text to a numeric value, it will add them as numbers;

if it can’t, you will get an error. On the other hand, if you try to concatenate a numeric

data type with a text data type, DAX will implicitly convert the numeric data type to text.

Although most of the time implicit conversions give you the results you are looking for,

they come at a performance cost and should be avoided if possible. For example, if you

import data from a text file and the column is set to a text data type, but you know it is in

fact numeric, you should change the data type in the model.

When creating calculations in DAX, you need to reference tables and columns. If the

table name doesn’t contain spaces, you can just refer to it by name. If the table name

contains spaces, you need to enclose it in single quotes. Columns and measures are

enclosed in brackets. If you just list the column name in the formula, it is assumed that

the column exists in the same table. If you are referring to a column in another table, you

need to use the fully qualified name, which is the table name followed by the column

name. The following code demonstrates the syntax:

=[SalesAmount] - [TotalCost]

=Sales[SalesAmount] - Sales[TotalCost]

='Internet Sales'[SalesAmount] - 'Internet Sales'[TotalCost]

Figure 5-3. Using cells in different rows

Chapter 5 Creating CalCulations with DaX

109

Here are some other points to keep in mind when working with DAX:

• DAX formulas and expressions can’t modify or insert individual

values in tables.

• You can’t create calculated rows using DAX. You can create only

calculated columns and measures.

• When defining calculated columns, you can nest functions to any

level.

The first thing to understand when creating a calculation is which operators are

supported and what the syntax to use them is. In the next section, you will investigate the

various DAX operators.

 Implementing DAX Operators
DAX contains a robust set of operators, including arithmetic, comparison, logic, and text

concatenation. Most of these should be familiar to you and are listed in Table 5-1.

Chapter 5 Creating CalCulations with DaX

110

As an example of the arithmetic operator, the following code is used to divide

the Margin column by the Total Cost column to create a new column, the Margin

Percentage.

=[Margin]/[TotalCost]

It is very common to have several arithmetic operations in the same calculation.

In this case, you must be aware of the order of operations. Exponents are evaluated

first, followed by multiplication/division, and then addition/subtraction. You can

Table 5-1. DAX Operators

Category Symbol Use

arithmetic operators

+ addition

- subtraction

∗ Multiplication

/ Division

^ exponentiation

Comparison operators

= equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

not equal to

text concatenation operator

& Concatenation

logic operators

&& and

|| or

Chapter 5 Creating CalCulations with DaX

111

control order of operations by using parentheses to group calculations; for example, the

following formula will perform the subtraction before the division:

=([Sales Amount]-[Total Cost])/[Total Cost]

The comparison operators are primarily for IF statements. For example, the

following calculation checks to see whether a store’s selling area size is greater than 1000.

If it is, it is classified as a large store; if not, it is classified as small:

=IF([Selling Area Size]>1000,"Large","Small")

The logical operators are used to create multiple comparison logic. The following

code checks to see whether the store size area is greater than 1000 or if it has more than

35 employees to classify it as large:

=IF([Selling Area Size]> 1000 || [Employee Count] > 35,"Large","Small")

When you start stringing together a series of logical conditions, it is a good idea to

use parentheses to control the order of operations. The following code checks to see

whether the store size area is greater than 1000 and if it has more than 35 employees

to classify it as large. It will also classify it as large if it has annual sales of more than

$1,000,000 regardless of its size area or number of employees:

=IF(([Selling Area Size]> 1000 && [Employee Count] > 35) || [Annual Sales]

> 1000000,"Large","Small")

When working with DAX calculations, you may need to nest one formula inside

another. For example, the following code nests an IF statement inside the false part of

another IF statement. If the employee count is not greater than 35, it jumps to the next

IF statement to check whether it is greater than 20:

=IF(Store[EmployeeCount]>35,"Large",IF(Store[EmployeeCount]>20,"Medium",

"Small"))

DAX contains many useful functions for creating calculations and measures. These

functions include text functions, date and time functions, statistical functions, math

functions, and informational functions. The next few sections look at using the various

function types in your calculations.

Chapter 5 Creating CalCulations with DaX

112

 Working with Text Functions
A lot of calculations involve text manipulation. You may need to truncate, parse, search,

or format the text values that you load from the source systems. DAX contains many

useful functions for working with text. The functions are listed in Table 5-2 along with a

description of what they are used for.

Table 5-2. DAX Text Functions

Function Description

BLANK returns a blank

CONCATENATE Joins two text strings into one text string

EXACT Compares two text strings and returns TRUE if they are exactly the same, and

FALSE otherwise

FIND returns the starting position of one text string within another text string

FIXED rounds a number to the specified number of decimals and returns the result as text

FORMAT Converts a value to text according to the specified format

LEFT returns the specified number of characters from the start of a text string

LEN returns the number of characters in a text string

LOWER Converts all letters in a text string to lowercase

MID returns a string of characters from a text string, given a starting position and length

REPLACE replaces part of a text string with a different text string

REPT repeats text a given number of times. use REPT to fill a cell with a number of

instances of a text string

RIGHT returns the last character or characters in a text string, based on the number of

characters you specify

SEARCH returns the number of the character at which a specific character or text string is

first found, reading left to right

SUBSTITUTE replaces existing text with new text in a text string

TRIM removes all spaces from text except for single spaces between words

UPPER Converts a text string to all uppercase letters

VALUE Converts a text string that represents a number to a number

Chapter 5 Creating CalCulations with DaX

113

As an example of using a text function in a calculation, let’s say you have a product

code column in a products table where the first two characters represent the product

family. To create the product family column, you would use the Left function as follows:

=Left([Product Code],2)

You can use the FIND function to search a text for a subtext. You can use a (?) to

match any single character and a (*) to match any sequence of characters. You have the

option of indicating the starting position for the search. The FIND function returns the

starting position of the substring found. If it doesn’t find the substring, it can return a 0,

–1, or a blank value. The following code searches the product description column for the

word mountain:

=FIND("mountain",[Description],1,-1)

The FORMAT function converts a value to text based on the format provided. For

example, you may need to convert a date to a specific format. The following code

converts a date data type to a string with a format like “Mon - Dec 02, 2019”:

=FORMAT([StartDate],"ddd - MMM dd, yyyy")

Along with the ability to create your own format, there are also predefined formats

you can use. The following code demonstrates using the Long Date format “Monday,

December 2, 2019”:

=FORMAT([StartDate],"Long Date")

Now that you have seen how to use some of the text functions, the next types of

functions to look at are the built-in date and time functions.

 Using DAX Date and Time Functions
Most likely you will find that your data analysis has a date component associated with

it. You may need to look at sales or energy consumption and need to know the day of

the week the event occurred. You may have to calculate age or maturity dates. DAX has

quite a few date and time functions to help create these types of calculations. Table 5-3

summarizes the various date and time functions available.

Chapter 5 Creating CalCulations with DaX

114

As an example of using the date functions, say you need to calculate years of service

for employees. The first thing to do is find the difference between the current year and

the year they were hired. The following code gets the year from today’s date:

=YEAR(Today())

Now you can subtract the year of their hire date. Notice we are nesting one function

inside another. Nesting functions is a common requirement for many calculations:

=YEAR(TODAY()) - YEAR([HireDate])

Table 5-3. DAX Date and Time Functions

Function Description

DATE returns the specified date in datetime format

DATEVALUE Converts a date in the form of text to a date in datetime format

DAY returns the day of the month

EDATE returns the date that is the indicated number of months before or after the start date

EOMONTH returns the date in datetime format of the last day of the month, before or after a

specified number of months

HOUR returns the hour as a number from 0 (12:00 a.m.) to 23 (11:00 p.m.)

MINUTE returns the minute as a number from 0 to 59

MONTH returns the month as a number from 1 (January) to 12 (December)

NOW returns the current date and time in datetime format

SECOND returns the seconds of a time value, as a number from 0 to 59

TIME Converts hours, minutes, and seconds given as numbers to a time in datetime format

TIMEVALUE Converts a time in text format to a time in datetime format

TODAY returns the current date

WEEKDAY returns a number from 1 to 7 identifying the day of the week of a date

WEEKNUM returns the week number for the given date

YEAR returns the year of a date as a four-digit integer

YEARFRAC Calculates the fraction of the year represented by the number of whole days

between two dates

Chapter 5 Creating CalCulations with DaX

115

Astute readers will realize that the result of this calculation is only correct if the

current month is greater than or equal to the month they were hired. You can adjust for

this using a conditional If statement as follows:

= If (MONTH(TODAY())>=MONTH([HireDate]) ,YEAR(TODAY()) -

YEAR([HireDate]),YEAR(TODAY()) - YEAR([HireDate])-1)

As you can see, calculations can get quite complicated. The challenge is making sure

that the open and closing parentheses of each function line up correctly. One way to

organize the code is to use multiple lines and indenting. To get a new line in the formula

editor bar, you need to hold down the Shift key while you press Enter. I find the following

easier to understand:

= If (MONTH(TODAY())>=MONTH([HireDate]),

 YEAR(TODAY()) - YEAR([HireDate]),

 YEAR(TODAY()) - YEAR([HireDate])-1

)

There is often more than one way to create a calculation. You may find an easier way

to make the calculation or one that performs better. The following calculates the years of

service using the YEARFRAC function and the TRUNC function (one of the math functions)

to drop the decimal part of the number:

=TRUNC(YEARFRAC([HireDate],TODAY()))

The next group of functions you are going to investigate are the informational and

logical functions. These functions are important when you want to determine whether

a condition exists such as a blank value, or whether an error is occurring due to a

calculation. These functions allow you to trap for conditions and respond to them in an

appropriate way.

 Using Informational and Logical Functions
As you start building more complex calculations, you often need to use informational

and logical functions to check for conditions and respond to various conditions. One

common example is the need to check for blank values. The ISBLANK function returns

TRUE if the value is blank and FALSE if it is not. The following code uses a different

calculation depending on whether the middle name is blank:

Chapter 5 Creating CalCulations with DaX

116

=IF(ISBLANK([MiddleName]),

[FirstName] & " " & [LastName],

[FirstName] & " " & [MiddleName] & " " & [LastName]

)

The ISERROR function is used to check whether a calculation or function returns an

error. The following calculation checks to see if a divide by zero error occurs during a

division:

=IF(ISERROR([TotalProductCost]/[SalesAmount]),

 BLANK(),

 [TotalProductCost]/[SalesAmount]

)

Another way to create this calculation is to use the IFERROR function, which returns

the value if no error occurs and an alternate value if an error occurs:

=IFERROR([TotalProductCost]/[SalesAmount],BLANK())

Tables 5-4 and 5-5 list the logical and informational functions available in DAX.

Table 5-4. The DAX Logical Functions

Function Description

AND Checks whether both arguments are TRUE

FALSE returns the logical value FALSE

IF Checks whether a condition provided as the first argument is met. returns one

value if the condition is TRUE and another value if the condition is FALSE

IFERROR evaluates an expression and returns a specified value if the expression returns an

error; otherwise, returns the value of the expression itself

NOT Changes FALSE to TRUE, or TRUE to FALSE

OR Checks whether one of the arguments is TRUE to return TRUE

SWITCH evaluates an expression against a list of values and returns one of multiple possible

result expressions

TRUE returns the logical value TRUE

Chapter 5 Creating CalCulations with DaX

117

When you are analyzing data, you often need to look up corresponding data from

a related table. You may need to obtain descriptions from a related code or summarize

data and import it into a table, such as lifetime sales. The following section looks at how

you go about looking up related data using DAX.

 Getting Data from Related Tables
There are times when you need to look up values in other tables to complete a

calculation. If a relationship is established between the tables, you can use the RELATED

function. This allows you to denormalize the tables and make it easier for users to

navigate. For example, you may have a Customer table related to a Geography table (see

Figure 5-4).

Table 5-5. The DAX Informational Functions

Function Description

CONTAINS returns TRUE if values for all referred columns exist, or are contained,

in those columns

ISBLANK Checks whether a value is blank

ISERROR Checks whether a value is an error

ISLOGICAL Checks whether a value is a Boolean value

ISNONTEXT Checks whether a value is not text (blank cells are not text)

ISNUMBER Checks whether a value is a number

ISTEXT Checks whether a value is text

LOOKUPVALUE returns the value in the column for the row that meets all criteria

specified by a search

Chapter 5 Creating CalCulations with DaX

118

Figure 5-4. Related tables

If you need to look at sales by customer’s country, you can use the RELATED function

to create a Country column in the Customers table:

=RELATED(Geography[CountryRegionName])

You can then hide the Geography table from client tools to keep the model cleaner

and less confusing to users.

Although the related table returns a single value, there are times when you want to

look at a set of related data and aggregate it before displaying the value in the column.

For example, you may want to add a column to the Customers table that lists their

lifetime sales amount. In this case, you would use the RELATEDTABLE function to get the

related sales and then sum them up for each customer:

=SUMX(RELATEDTABLE(Sales),[SalesAmount])

Note the previous code uses the SUMX function, which is used instead of the SUM
function because you are applying a filter. Chapter 6 discusses this in more detail.

The final set of functions to look at are the math, trig, and statistical functions. These

functions allow you to perform common analysis such as logs, standard deviation,

rounding, and truncation.

Chapter 5 Creating CalCulations with DaX

119

 Using Math, Trig, and Statistical Functions
Along with the functions discussed thus far, DAX also includes quite a few math, trig,

and statistical functions. The math functions (see Table 5-6) are used for rounding,

truncating, and summing up the data. They also contain functions you may use in

scientific, engineering, and financial calculations; for example, you may need to

calculate the volume of a sphere given the radius. This is calculated in DAX as follows:

=4*PI()*POWER([Radius],3)/3

As another example, say you want to calculate compounding interest on an

investment. The following DAX calculation determines the compounding rate of return

for an investment:

=[Principal]*POWER(1+([IntRate]/[CompoundRate]),[CompoundRate]*[Years])

Table 5-6. Some of the Math and Trig Functions Available in DAX

Function Description

ABS returns the absolute value of a number

CEILING rounds a number up to the nearest integer or to the nearest multiple of significance

EXP returns e raised to the power of a given number

FACT returns the factorial of a number

FLOOR rounds a number down, toward zero, to the nearest multiple of significance

LOG returns the logarithm of a number to the base you specify

PI returns the value of pi, 3.14159265358979, accurate to 15 digits

POWER returns the result of a number raised to a power

ROUND rounds a number to the specified number of digits

SQRT returns the square root of a number

SUM adds all the numbers in a column

TRUNC truncates a number to an integer by removing the decimal, or fractional,

part of the number

Chapter 5 Creating CalCulations with DaX

120

When you are analyzing data, you often want to look at not only the relationship

between the data but also the quality of the data and how well you can trust your

predictions. This is where the statistical analysis of the data comes into play. With

statistics, you can do things like determine and account for outliers in the data, examine

the volatility of the data, and detect fraud. As an example, you can use DAX to determine

and filter out the outliers in your data using the standard deviation. The following DAX

function calculates the standard deviation of the sales amount:

=STDEVX.P(RELATEDTABLE(Sales),Sales[SalesAmount])

Table 5-7 lists some of the statistical functions available in DAX.

Table 5-7. Some Statistical Functions Available in DAX

Function Description

AVERAGE returns the average of all the numbers in a column

COUNT Counts the number of cells in a column that contain numbers

COUNTA Counts the number of cells in a column that are not empty

COUNTBLANK Counts the number of blank cells in a column

COUNTROWS Counts the number of rows in the specified table

DISTINCTCOUNT Counts the number of different cells in a column of numbers

MAX returns the largest numeric value in a column

MIN returns the smallest numeric value in a column

RANK.EQ returns the ranking of a number in a list of numbers

RANKX returns the ranking of a number in a list of numbers for each row in the

table argument

STDEV.S returns the standard deviation of a sample population

TOPN returns the top N rows of the specified table

VAR.S returns the variance of a sample population

Now that you have seen what functions you have available in Power BI through DAX,

I want to review some tips on creating functions in general.

Chapter 5 Creating CalCulations with DaX

121

 Tips for Creating Calculations in Power BI
Before turning you loose on a hands-on lab, I want to give you a few pointers on

creating calculations in Power BI. To create a calculated column, right-click the table

you want to add the column to in the Field list window. In the context menu, select

New Column (see Figure 5-5).

Figure 5-5. Adding a calculated column

Enter the formula in the formula editor bar. Calculated columns start with the name

of the column followed by an equal sign (=) and then the formula. The formula editor bar

supplies an autocomplete feature that you should take advantage of (see Figure 5- 6). Select

the function, table, or column from the drop-down list and press the Tab key to insert it

into the formula. If you don’t see the autocomplete drop-down, chances are there is an

error in your formula.

Chapter 5 Creating CalCulations with DaX

122

There are two buttons next to the formula editor bar: the X is used to cancel the

changes you made and the check mark is used to commit the changes.

When you create a calculation incorrectly, you will get an error indicator and a

message. Reviewing the message will give you useful information that can help you fix

the error (see Figure 5-7).

Figure 5-6. Using autocomplete when creating calculations

Figure 5-7. Reviewing the error message

Now that you have seen how to create calculations with DAX and are familiar with

the DAX functions available to you, it is time to gain some hands-on experience.

HANDS-ON LAB: CREATING CALCULATED COLUMNS IN POWER BI

in the following lab, you will

• Create calculated columns

• use DaX text functions

• use date functions in a DaX expression

• use data from a related table in an expression

• implement conditional logic in an expression

Chapter 5 Creating CalCulations with DaX

123

 1. in the labstarterFiles\Chapter5lab1 folder, open the Chapter5lab1.pbix file.

this file contains a data model consisting of sales data, product data, and

store data.

 2. View the model diagram (see Figure 5-8).

Figure 5-8. The data model for store sales

 3. switch to the Data view and select the sales table.

 4. right-click the sales table in the Fields list and select new Column. in the

formula bar above the table, enter the following to calculate margin:

Margin = [SalesAmount] - [TotalCost]

 5. repeat this procedure to create a Margin percent column with the following

formula:

Margin Percent = DIVIDE([Margin],[SalesAmount],BLANK())

 6. in the Field list window, select the Calendar table.

 7. use the weekDay function to create a Dayofweek column.

 8. use the Format function to get the weekday (name) column.

 9. Create a Year, Month no, and Month column. Your Calendar table should look

like Figure 5-9. (hint: use the Format function to get the Month column.)

Chapter 5 Creating CalCulations with DaX

124

 10. using the Year and Month columns, create a Calendar hierarchy in the Date table.

 11. in the products table, insert a weight label column with the following formula:

 =if(ISBLANK([Weight]),BLANK(), [Weight] & " " &

[WeightUnitMeasureID])

 12. Create a product Category column using the RELATED function:

= RELATED('ProductCategory'[ProductCategory])

 13. using the RELATED function, create a productsubcategory column.

 14. hide the productCategory and productsubcategory tables from the client tools.

 15. switch to the store table and create a Years open column with the

following formula:

=TRUNC(YEARFRAC([OpenDate],

 If(ISBLANK([CloseDate]),TODAY(),[CloseDate])),0)

 16. Create a lifetime sales column using the following formula:

=SUMX(RELATEDTABLE(Sales),Sales[SalesAmount])

 17. save and close the file.

Figure 5-9. Adding calculated columns to the Calendar table

Chapter 5 Creating CalCulations with DaX

125

 Summary
This chapter introduced you to the DAX language and the built-in functions that you

can use to create calculations. At this point, you should be comfortable with creating

calculated columns and using the DAX functions. I strongly recommend that you

become familiar with the various functions available and how to use them in your

analysis.

In the next chapter, you will continue working with DAX to create measures.

Measures are one of the most important parts of building your model in Power BI; the

measures are the reason you are looking at your data. You want to answer questions

such as how sales are doing or what influences energy consumption. Along with creating

measures, you will also see how filter context affects measures. Filter context is one of the

most important concepts you need to master to create powerful Power BI models and

reports.

Chapter 5 Creating CalCulations with DaX

127
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_6

CHAPTER 6

Creating Measures
with DAX
Creating measures in DAX is the most important skill necessary to create solid data

models. This chapter covers the common functions used to create measures in the data

model. It also covers the important topic of data context and how to alter or override the

context when creating measures.

After completing this chapter, you will be able to

• Understand the difference between measures and attributes

• Understand how context affects measurements

• Create common aggregates

• Know how and when to alter the filter context

 Measures vs. Attributes
If you look at a typical star model for a data warehouse, you have a fact table surrounded

by dimension tables. For example, Figure 6-1 shows a financial fact table surrounded by

several dimension tables.

128

Remember, the fact table contains numbers that you need to aggregate; for example,

in the finance table, you have the amount, which is a monetary value that needs to be

aggregated. In a sales fact table, you may have a sales amount and item counts. In a

human resources system, you might have hours worked. The dimension tables contain

the attributes that you are using to categorize and roll up the measures. For example,

the financial measures are classified as profit, loss, and forecasted. You want to roll the

values up to the department and organization level and you want to compare values

between months and years.

When you start slicing and dicing the data in a matrix, the attributes become the row

and column headers, whereas the measures are the values in the cells. Attributes are also

commonly used as filters either in the filter pane or in a slicer. Figure 6-2 shows a matrix

containing research and development spending, actual and budgeted, for the months in

the fiscal year 2006.

Figure 6-1. Typical star schema

Chapter 6 Creating Measures with DaX

129

If you look at the filtering for each cell, you should realize they are all filtered a little

differently. The three measures indicated by the first box differ by month, whereas the

measures indicated by the second box differ by actual vs. budgeted amount. As you

change the fiscal year, department, or organization, the values for the measures must be

recalculated because the query context has changed.

In the following section, you will see how you can create some common aggregation

measures in your Power BI model.

 Creating Common Aggregates
It is very easy to create common aggregates such as sum, count, or average in Power

BI. First, you need to determine which table you want to associate the measure with. If

you follow the star schema model, this will most likely be the fact table, but it doesn’t

have to be.

To add the measure, in the Data view tab, right-click the table and select New

measure (see Figure 6-3).

Figure 6-2. Analyzing data in a matrix

Chapter 6 Creating Measures with DaX

130

Once you select New measure, you enter the measure into the formula bar (see

Figure 6-4).

Figure 6-3. Adding a measure to the model

Figure 6-4. Entering the DAX formula

Chapter 6 Creating Measures with DaX

131

While creating a calculated column and a measure seem similar, they are very

different. A calculated column is calculated when the model is loaded and is contained

in a table. A measure is calculated on the fly as you change the filter context in the report

or visual. The measure is not contained in a table but is merely associated with it. This

determines where it shows up in the Field list. You can change the table association

on the model (see Figure 6-5). This is also why you need to reference the table and the

column when using a column in a measure formula.

Figure 6-5. Entering the DAX formula

You may have noticed that the aggregate functions such as SUM, AVE, MIN, and MAX

have corresponding SUMX, AVEX, MINX, and MAXX functions (see Figure 6-6).

Figure 6-6. SUM and SUMX functions

Chapter 6 Creating Measures with DaX

132

The X functions are used when you are evaluating an expression for each row in the

table and not just a single column. As an example, the SUMX function is defined as follows:

SUMX(<table>, <expression>)

where the table is the table containing the rows to be evaluated and the expression is

what will be evaluated for each row.

As an example, say you have a sales table that contains a Cost and a Gross column.

To figure out the total net sales amount, you can take the gross amount minus the cost

and sum the result for each row, as in the following formula:

SumNet:=SUMX(Sales,[Gross]-[Cost])

Another way to get the same result is to create a net calculated column first and then

use the SUM function on the net column. The difference is that calculated columns are

precalculated and stored in the model. Measures are calculated when filters are applied

to them in the Report view and must be recalculated every time the data context changes.

So, the more calculated columns you have, the greater the size of your Power Pivot file.

The more measures you have, and the greater their complexity increases, the more

memory is necessary when you are working with the file. In most cases, you are better off

doing as much calculation in memory rather than creating lots of calculated columns.

Understanding how data context changes the measurement value is very important

when creating measures and is explored in the next section.

 Mastering Data Context
Context plays an important role when creating measures in the Power Pivot model.

Unlike static reports, Power Pivot reports are designed for dynamic analysis by the

client. When the user changes filters, drills down, and changes column and row headers

in a matrix, the context changes, and the values are recalculated. Knowing how the

context changes and how it affects the results is very essential to being able to build and

troubleshoot formulas.

There are three types of context you need to consider: row, query, and filter. The

row context comes into play when you are creating a calculated column. It includes the

values from all the other columns of the current row as well as the values of any table

related to the row. If you create a calculated column, say margin

=[Gross] - [Cost]

Chapter 6 Creating Measures with DaX

133

DAX uses the row context to look up the values from the same row to complete the

calculation. If you create a calculated column, such as lifetime sales

=SUMX(RELATEDTABLE(Sales),[SalesAmount])

DAX automatically looks up the related values using the row context of the current

row. The row context is set once the model is loaded and will not change until new

data is loaded. This is why calculated columns are precalculated and only need to be

recalculated when data is refreshed.

Query context is the filtering applied to a cell in the matrix. When you drop a

measure into a matrix, the DAX query engine examines the row and column headers and

any filters applied. Each cell has a different query context applied to it (see Figure 6-7)

and returns the value associated with the context. Because you can change the query

context on the fly by changing row or column headers and filter values, the cell values

are calculated dynamically, and the values are not held in the Power BI model.

Figure 6-7. The query context of a measure

Filter context is added to the measure using filter constraints as part of the formula.

The filter context is applied in addition to the row and query contexts. You can alter the

context by adding to it, replacing it, or selectively changing it using filter expressions. For

example, if you used the following formula to calculate sales,

AllStoreSales=CALCULATE(SUM(Sales[SalesAmount]),ALL(Store[StoreType]))

the filter context would clear any StoreType filter implemented by the query context.

In the next section, you will see why knowing when and how to alter the query

context is an important aspect of creating measures.

Chapter 6 Creating Measures with DaX

134

 Altering the Query Context
When creating calculations, you often need to alter the filter context being applied to

the measure. For example, say you want to calculate the sales of a product category

compared to the sales of all products (see Figure 6-8).

To calculate the sales ratio, you need to take the sales filtered by the query context (in

this case, categories) and divide it by the sales of all products regardless of the product

query context. To calculate sales, you just use the SUM function. To calculate the sum of

all product sales, you need to override any product filtering applied to the cell. To do

that, you use the CALCULATE function, which evaluates an expression in a context that is

modified by the specified filters and has the following syntax:

CALCULATE(<expression>,<filter1>,<filter2>...)

where expression is essentially a measure to be evaluated and the filters are Boolean

expressions or a table expression that defines the filters.

So, to override any product filters, you use the following code:

TotalProductSales=CALCULATE(SUM([SalesAmount]), ALL(Product))

This uses the ALL function, which returns all the rows in a table or all the values in a

column, ignoring any filters that might have been applied. In this case, it clears all filters

placed on the Product table. Figure 6-9 shows the measures in a matrix.

Figure 6-8. Viewing the product sales ratio

Chapter 6 Creating Measures with DaX

135

Notice the ProductSales measure is affected by the product filter (category), whereas

the AllProductSales is not. The final step to calculate the ProductSalesRatio measure is

to divide the ProductSales by the AllProductSales. You can use a measure inside another

measure if you don’t have a circular reference. So, the ProductSalesRatio is calculated as

follows:

ProductSalesRatio = Divide([ProductSales],[TotalProductSales],0)

You can hide the AllProductSales measure from the client tools because, in this case,

it is used as an intermediate measure and is not useful on its own.

In this section, you saw how to use the CALCULATE function and a filter function to

alter the filters applied to a measure. There are many filter functions available in DAX,

and it is important that you understand when to use them. The next section looks at

several more important filter functions you can use.

 Using Filter Functions
The filter functions in DAX allow you to create complex calculations that require you to

interrogate and manipulate the data context of a row or cell in a matrix. Table 6-1 lists

and describes some of the filter functions available in DAX.

Figure 6-9. Verifying the AllProductSales measure

Chapter 6 Creating Measures with DaX

136

Table 6-1. Some DAX Filter Functions

Function Description

ALL returns all the rows in a table, or all the values in a column, ignoring any

filters that might have been applied

ALLEXCEPT removes all context filters in the table except filters that have been applied

to the specified columns

ALLNONBLANKROW returns all rows but the blank row and disregards any context filters that

might exist

ALLSELECTED removes context filters from columns and rows, while retaining all other

context filters or explicit filters

CALCULATE evaluates an expression in a context that is modified by the specified filters

CALCULATETABLE evaluates a table expression in a context modified by the given filters

DISTINCT returns a one-column table that contains the distinct values from the

specified column

FILTER returns a table that represents a subset of another table or expression

FILTERS returns the values that are directly applied as filters

HASONEVALUE returns TRUE when the context has been filtered down to one distinct value

ISFILTERED returns TRUE when a direct filter is being applied

ISCROSSFILTERED returns TRUE when the column or another column in the same or related

table is being filtered

KEEPFILTERS Modifies how filters are applied while evaluating a CALCULATE or

CALCULATETABLE function. Keeps applied filters and adds additional filters

RELATED returns a related value from another table

USERELATIONSHIP specifies the relationship to be used in a specific calculation

VALUES returns a one-column table that contains the distinct values from the

specified column

You have already seen how you can use the CALCULATE function in combination

with the ALL function to calculate the total product sales, ignoring any product filtering

applied. Let’s look at a few more examples.

Chapter 6 Creating Measures with DaX

137

Figure 6-10 shows a Power Pivot model for reseller sales. In the model, there is an

inactive relationship between the Employee and the SalesTerritory tables. You can use

this relationship to calculate the number of salespeople in each country.

Figure 6-10. An inactive relationship in the Power BI model

You calculate the number of sales reps in each country using the following code:

Sales Rep Cnt=CALCULATE(

DISTINCTCOUNT(Employee[EmployeeNationalIDAlternateKey]),

USERELATIONSHIP(Employee[SalesTerritoryKey],

'Sales Territory'[SalesTerritoryKey]))

Chapter 6 Creating Measures with DaX

138

In this case, you need to use the CALCULATE function so that you can apply the filter

function USERELATIONSHIP to tell the DAX query engine which relationship to use.

Figure 6-11 shows the resulting matrix.

The next example looks at the difference between the ALL and the ALLSELECTED filter

functions. You can create three sales amount measures as follows:

Reseller Sales=SUM([SalesAmount])

Reseller Grand Total=calculate(sum([SalesAmount]), ALL('Reseller Sales'))

Reseller Visual Total=calculate(sum([SalesAmount]), ALLSELECTED())

Reseller Sales keeps all the data contexts applied to the measure. Reseller Grand

Total removes all context associated with the ResellerSales table and any related table.

Reseller Visual Total removes the column and row context from the measure.

Figure 6-12 shows the resulting measures in a matrix.

Figure 6-11. Count of sales reps in each country

Figure 6-12. Results of using different filters

Chapter 6 Creating Measures with DaX

139

Now let’s look at a more complex example. In this example, you want to determine

the best single-order customers in a particular time period. The final matrix is shown in

Figure 6-13.

The first step is to find the customers who spent a lot of money during the time

period. To calculate customer sales, you use the following measure:

Sum Sales=SUM([SalesAmount])

Next, you want to only look at large spenders (over $30,000 spent during the period)

so you can filter out smaller values:

Large Sales=IF([Sum Sales]>=30000,[Sum Sales],Blank())

Figure 6-13. Finding best single-order customers

Chapter 6 Creating Measures with DaX

140

The next step is to find the order amounts for the customer and take the maximum value:

Top Sale=MAXX(VALUES(Date[Date]),[Sum Sales])

Because you only want to list the top sales for top customers, you can add an IF

statement to make sure the customer has large sales:

Top Sale=

IF(ISBLANK([Large Sales]),Blank(),MAXX(VALUES(Date[Date]),[Sum Sales]))

As a final example, say you are working with the HR department and you want to

create a matrix that will allow them to list employee counts for the departments at a

particular date. There is an EmployeeDepartmentHistory table that lists employee,

department, start date, and end date. There is also a Dates table that has a row for

every date spanning the department histories. Figure 6-14 shows the matrix containing

employee counts for each department.

Figure 6-14. Employee counts as of the selected date

Chapter 6 Creating Measures with DaX

141

As of Date is used as a filter, and Emp Cnt is the measure. When the As of Date

is changed, the Emp Cnt is recalculated to show the employee counts on that date.

Figure 6-15 shows new counts after the date is changed.

The first step to creating the Emp Cnt is to use the COUNT function because you want

to count the EmployeeID in the table:

Emp Cnt=COUNT(EmpDepHist[BusinessEntityID])

Because you need to filter the table to only active employees at the date chosen, you

need to change this to the COUNTX function:

Emp Cnt=COUNTX(EmpDepHist, EmpDepHist[BusinessEntityID])

Figure 6-15. Changing the As of Date

Chapter 6 Creating Measures with DaX

142

To filter the EmpDepHist table, you use the FILTER function:

FILTER(<table>,<filter>)

The FILTER function is a Boolean expression that evaluates to TRUE. In this case, you

need to have the date that the employee started in the department less than or equal to

the As of Date:

EmpDepHist[StartDate]<=Dates[As of Date]

Now, because the matrix user can select more than one date, and you want to make

sure you only compare it to a single date, you can use the MAX function:

EmpDepHist[StartDate]<=MAX(Dates[As of Date])

You also want to make sure the date the employee left the department is greater than

the As of Date:

EmpDepHist[EndDate] > Max(Dates[As of Date]

If the employee is currently in the department, the EndDate will be blank:

ISBLANK(EmpDepHist[EndDate])

When you combine these filter conditions, you get the following filter condition:

EmpDepHist[StartDate]<=MAX(Dates[As of Date])

&& (ISBLANK(EmpDepHist[EndDate]) || EmpDepHist[EndDate] > Max(Dates[As of Date]))

The final FILTER function then becomes the following:

FILTER(EmpDepHist,

EmpDepHist[StartDate]<=MAX(Dates[As of Date])

&& (ISBLANK(EmpDepHist[EndDate]) || EmpDepHist[EndDate] >

Max(Dates[As of Date])))

And the final employee count measure becomes the following:

Emp Cnt=COUNTX(FILTER(EmpDepHist,

EmpDepHist[StartDate]<=MAX(Dates[As of Date])

&& (ISBLANK(EmpDepHist[EndDate]) || EmpDepHist[EndDate] >

Max(Dates[As of Date]))),

EmpDepHist[BusinessEntityID])

Chapter 6 Creating Measures with DaX

143

As you can see, creating a measure can be quite complex, but if you break it up

into steps, it becomes very manageable. A good practice to make the measures more

manageable is to use variables. In the next section, you will learn to use variables in your

measures.

 Using Variables in DAX
As your measures become increasingly complex, it is a good idea to start using variables

in your measure definitions. Using variables increases both the performance and

readability of your code.

Variables can be both scalar values and tables. You define variables using the

VAR keyword and use them in the return clause. For example, the following measure

calculates the sales growth over the previous year:

 Sales Growth =

Var

 CurrentSales = Sum('Reseller Sales'[SalesAmount])

Var

 PrevYearSales = Calculate(

 Sum('Reseller Sales'[SalesAmount]),

 SAMEPERIODLASTYEAR('DimDate'[Datekey])

)

Return

 Divide(

 CurrentSales - PrevYearSales,

 PrevYearSales,

 BLANK()

)

As you can see, using variables and indenting can greatly increase the readability

of your code. Although writing complex DAX measures can be daunting at first, rest

assured the more you work with DAX and creating measures, the more intuitive and

easier it becomes.

Now that you have seen how to create measures and alter the data context using

DAX, it is time to get your hands dirty and create some measures in the following lab.

Chapter 6 Creating Measures with DaX

144

HANDS-ON LAB: CREATING MEASURES IN POWER PIVOT

in the following lab, you will

• Create aggregate measures

• alter the data context in a measure

• use a nonactive relationship in a measure

• Create a complex measure

• Create a Kpi

 1. in the LabstarterFiles\Chapter6Lab1 folder, open the Chapter6Lab1.pbix file. this

file contains a data model consisting of sales data, product data, and store data.

 2. View the model in the power Bi model using the Model view (Figure 6-16).

Figure 6-16. The Power Pivot model

Chapter 6 Creating Measures with DaX

145

 3. switch to Data view in the power Bi window and select the sales table.

 4. under the sales table, create a sum sales measure by right-clicking the table

name and choosing “new measure”:

Sum Sales = Sum(Sales[SalesAmount])

 5. also create a Max sales Quantity, a Min sales Quantity, and an ave sales

Quantity measure under the sales table.

 6. to test how the measures are recalculated as the filter context changes, switch

to the report tab and add a Matrix visual to the report (see Figure 6-17).

Figure 6-17. Creating a matrix

 7. if you don’t see the field wells, click the matrix to show them.

 8. add the sum sales and Max sales Quantity measures to the Values drop area.

under the product table, add the productCategory to the rows drop area.

 9. add a slicer visual to the report that allows you to slice by the Continent field in

the geography table.

 10. the report should look like the one shown in Figure 6-18. test the measures by

clicking the different continents. this changes the query context. notice how

the measure values are recalculated as the query context changes.

Chapter 6 Creating Measures with DaX

146

 11. now suppose we want a sales ratio comparing the sales to the total sales for all

products. Open the power pivot Model Designer in Data view mode. select the

sales table. add the following measure to the sales table:

All Product Sales=CALCULATE([Sum Sales],ALL('Product'))

 12. the all product sales measure uses the CALCULATE function to override any

product filter applied to the query context. Format the measure as currency.

 13. switch to the matrix. replace the Max sales Quantity measure with the all

product sales measure.

 14. test the measure by clicking different continents and notice that the all product

sales measure is equal to the total product sales for each continent (see

Figure 6-19).

Figure 6-18. Testing the query context

Figure 6-19. Testing the measure

Chapter 6 Creating Measures with DaX

147

 15. switch back to the Data view tab and add the following measure to the sales

table (format the measure as percentage):

Product Sales Ratio=Divide([Sum Sales],[All Product Sales],Blank())

 16. return to the report view tab and add the product sales ratio as a value in the

matrix you just created.

 17. Open the Model view tab. to create a relationship between the Date table and

the store table, drag the OpenDate field from the store table and drop it on top

of the DateKey in the Date table (see Figure 6-20). notice that this is not the

active relationship between the store and the Date tables as indicated by the

dashed line. this is because the active relationship goes from the store table,

through the sales table, and then to the Date table.

Figure 6-20. Creating an inactive relationship

Chapter 6 Creating Measures with DaX

148

 18. switch to the Data view tab and add the following measure to the store

table. Because you are using a nonactive relationship, you need to use the

USERELATIONSHIP function:

Store Count=CALCULATE(DISTINCTCOUNT([StoreKey]),

USERELATIONSHIP(Store[OpenDate],'Date'[Datekey]))

 19. to test the store count measure, create a matrix on a new report page. use

the Continent as the column labels and the CalendarMonth as the row labels.

use the store Count measure as the value. insert a slicer using CalendarYear.

Change it from a slider to a list. Your report should look like Figure 6-21.

Figure 6-21. Testing the store count measure

 20. the matrix shows the number of stores opened during a month. Click the

various years and observe the changes in the data.

 21. to find out the best sales day for a product category, create a sale Quantity

measure in the sales table:

Sale Quantity=SUM([SalesQuantity])

 22. use the sale Quantity measure to create a top sale Day Quantity measure. the

MAXX function is used to break any ties and returns the most recent DateKey:

Top Sale Day Quantity=MAXX(values('Date'[Datekey]),[Sale Quantity])

Chapter 6 Creating Measures with DaX

149

 23. to figure out the date of the top sales day, you first create a filter function that

returns the dates when the sale Quantity equals the top sale Day Quantity for

the period:

Filter(VALUES('Date'[Datekey]),

[Sale Quantity]=CALCULATE([Top Sale Day Quantity],

VALUES('Date'[Datekey])))

 24. this filter is then inserted into a CALCULATE function that returns the most

recent date. Format the measure as a short date (select More Formats in the

Format drop-down):

Top Sale Day=CALCULATE(MAX('Date'[Datekey]),

Filter(VALUES('Date'[Datekey]),[Sale Quantity]=

CALCULATE([Top Sale Day Quantity],VALUES('Date'[Datekey]))))

 25. Create a matrix like the one in Figure 6-22 to test your measures.

Figure 6-22. Testing the Top Sale Day measure

Chapter 6 Creating Measures with DaX

150

 26. Change the product sales ratio measure to use variables:

Product Sales Ratio =

Var SumSales = Sum(Sales[SalesAmount])

Var AllProductSales = Calculate(Sum(Sales[SalesAmount]),ALL('Product'))

Return

Divide(SumSales,AllProductSales,Blank())

 27. Verify the product sales ratio is still giving valid results. when done, save the

file and close power Bi Desktop.

 Summary
This was a long and meaty chapter. You now have a firm grasp of how to create measures

in your Power BI model. You should also understand data context and how it affects the

measurements. This can be a very confusing concept when you start to develop more

complex measures. Don’t worry—the more you work with it, the clearer it becomes.

The next chapter extends the concepts of this chapter. One of the most common

types of data analysis is comparing values over time. Chapter 7 shows you how to

correctly implement time-based analysis in Power BI. It includes setting up a date table

and using the various built-in functions for analyzing values to date, comparing values

from different periods, and performing semi-additive aggregations.

Chapter 6 Creating Measures with DaX

151
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_7

CHAPTER 7

Incorporating Time
Intelligence
One of the most common types of data analysis is comparing values over time. This

chapter shows you how to correctly implement time-based analysis in Power BI. It

includes setting up a date table and using the various built-in functions for analyzing

values to date, comparing values from different periods, and performing semi-additive

aggregations.

After completing this chapter, you will be able to

• Create a date table

• Use DAX for time period–based evaluations

• Shift the date context using filter functions

• Create semi-additive measures

 Date-Based Analysis
A large percentage of data analysis involves some sort of datetime-based aggregation

and comparison. For example, you may need to look at usage or sales for the month-to-

date (MTD) or year-to-date (YTD), as shown in Figure 7-1.

152

Another common example is looking at performance from one time period to the

next. For example, you may want to compare previous months’ sales with current sales

(see Figure 7-2) or sales for the current month to the same month a year before.

Figure 7-1. Calculating month-to-date and year-to-date sales

Figure 7-2. Calculating sales growth

Chapter 7 InCorporatIng tIme IntellIgenCe

153

In addition to these common data analytics, there are also times when you need

to base your aggregations on measures that are nonadditive, such as account balances

or inventory. In these cases, you need to determine the last value entered and use that

value to aggregate across the different time periods (see Figure 7-3).

DAX contains many functions that help you create the various datetime-based

analyses you may need. In the next section, you will see how to create a date table that is

required to use many of the datetime-based functions.

 Creating a Date Table
To use the built-in time intelligence functions in DAX, you need to have a date table in

your model for the functions to reference. The only requirement for the table is that it

needs a distinct row for each day in the date range at which you are interested in looking.

Each of these rows needs to contain the full date of the day. The date table can, and often

does, have more columns, but it doesn’t have to.

There are several ways to create the date table. You can either import a date table

from the source if one is available or use the DAX Calendar function. To use the Calendar

function, on the Modeling tab, click the New Table button. In the formula bar, enter the

CALENDAR function with the appropriate date range or the CALENDARAUTO function,

which looks at the model and determines the correct date range (see Figure 7-4).

Figure 7-3. Aggregating inventory amounts

Chapter 7 InCorporatIng tIme IntellIgenCe

154

After creating the date table, you can use DAX to create additional calculated

columns such as month, year, and weekday. The final step is to create a relationship

between the date table and the table that contains the values you want to analyze.

Once you have the table in the model, you need to mark it as the official date table

(see Figure 7-5) and indicate which column is the unique key (see Figure 7-6). This tells

the DAX query engine to use this table as a reference for constructing the set of dates

needed for a calculation. For example, if you want to look at year-to-date sales, the query

engine uses this table to get the set of dates it needs.

Figure 7-4. Creating a date table

Figure 7-5. Identifying the date table

Chapter 7 InCorporatIng tIme IntellIgenCe

155

There are many built-in time intelligent functions in DAX. Some of these

functions, like FIRSTNONBLANK, return a single date. Some return a set of dates, such as

PREVIOUSMONTH. And still others, like TOTALYTD, evaluate expressions over time. At this

point, the DAX built-in time intelligence functions support the traditional calendar

ending on December 31. They also support a fiscal calendar that has a different year-

end date and contains four quarters containing three months each. If you need to use a

custom financial calendar, you must create your own custom calculations.

Now that you understand how to create and designate the date table in your model,

it is time to look at implementing some of the common time intelligent functions to

analyze your data.

Figure 7-6. Setting the date key

Chapter 7 InCorporatIng tIme IntellIgenCe

156

 Time Period–Based Evaluations
A common analysis often employed in data analytics is looking at period-to-date values.

For example, you may want to look at sales year-to-date or energy consumption month-

to- date. DAX provides the TOTALMTD, TOTALQTD, and TOTALYTD functions that make this

very easy. For instance, the total year-to-date is defined as follows:

TOTALYTD(<expression>,<dates>[,<filter>][,<year_end_date>])

where expression is an expression that returns a single value (as opposed to a list or

table), dates is the date table’s key column, filter is an optional filter expression,

and year_end_date is also optional—you can use it to indicate the year-end of a fiscal

calendar. The following expressions are used to calculate the sum of the sales and the

sales year-to-date values:

Sum of Sales = SUM(Sales[SalesAmount])

YTD Sales = TOTALYTD([Sum of Sales],'Date'[Datekey])

If you want to calculate year-to-date sales for all products, use the following

expression:

YTD Sales ALL Products = TOTALYTD([Sum of Sales],'Date'[Datekey],

ALL('Product'))

Figure 7-7 shows the measures in a matrix. You can use these base measures to

calculate further measures, such as percent of year-to-date sales and percent of all

product sales.

Chapter 7 InCorporatIng tIme IntellIgenCe

157

You can also use another set of functions—DATESMTD, DATESQTD, and DATESYTD—to

create the same measures. Just as with the previous to-date measures, you need to pass

the date key from the date table to the functions. The following expression uses the

CALCULATE function with the DATESYTD filter to get the sales year-to-date measure:

YTD Sales 2 = CALCULATE([Sum of Sales],DATESYTD('Date'[Datekey]))

Using the CALCULATE function and the DATES functions is more versatile than the

total-to-date functions because you can use them for any type of aggregation, not just

the sum. The following expressions are used to calculate the average sales year-to-date.

The results are shown in Figure 7-8.

Ave Sales = AVERAGE([SalesAmount])

YTD Ave Sales = CALCULATE([Ave Sales],DATESYTD('Date'[Datekey]))

Figure 7-7. Calculating year-to-date values

Chapter 7 InCorporatIng tIme IntellIgenCe

158

Now that you know how to create time period–based calculations, you can use this to

compare past performance with current performance. But first, you need to know how to

shift the date context to calculate past performance.

 Shifting the Date Context
If you want to compare performance from one period to the same period in the past, say

sales for the current month to sales for the same month a year ago, you need to shift the date

context. DAX contains several functions that do this. One of the most versatile functions for

shifting the date context is the PARALLELPERIOD function. As with the other time intelligence

functions, you need to pass the key column of the date table to the function. You also need

to indicate the number of intervals and the interval type of year, quarter, or month:

PARALLELPERIOD(<dates>,<number_of_intervals>,<interval>)

One thing to remember is that the PARALLELPERIOD function returns a set of dates

that corresponds to the interval type. If you use the year, it returns a year of dates; the

month interval returns a month’s worth of dates. The following expression calculates

the sales totals for the month of the previous year. Figure 7-9 shows the results of the

calculation.

Figure 7-8. Calculating average year-to-date values

Chapter 7 InCorporatIng tIme IntellIgenCe

159

Month Sales Last Year = Calculate([Sum of Sales],

PARALLELPERIOD('Date'[Datekey],-12,Month))

Figure 7-9. Calculating sales for a parallel period

Chapter 7 InCorporatIng tIme IntellIgenCe

160

Notice that if you drill down to the date level (see Figure 7-10), you still see the

month totals for the month of the date for a year ago. As mentioned earlier, this is

because the PARALLELPERIOD in this case always returns the set of dates for the same

month as the row date for the previous year.

Now that you can calculate the month sales of the previous year, you can combine

it with current sales to calculate the monthly sales growth from one year to the next.

Figure 7-11 shows the results.

YOY Monthly Growth = Divide(([Sum of Sales]-[Month Sales Last Year]),[Month

Sales Last Year],BLANK())

Figure 7-10. Drilling to date level still shows month-level aggregation

Chapter 7 InCorporatIng tIme IntellIgenCe

161

Note that if there are no previous year sales, you get an error. You can control this by

using the third parameter in the Divide function. This controls what is displayed if there

is a divide by zero error. In this case, we are replacing the error with a blank value.

Another function commonly used to alter the date context is the DATEADD function.

The DATEADD function is used to add a date interval to the current date context. You can

add year, quarter, month, or day intervals.

DATEADD(<dates>,<number_of_intervals>,<interval>)

The following calculation is used to find the sum of the previous day sales using the

DATEADD function as a filter:

Prev Day Sales=Calculate([Sum of Sales],DATEADD('Date'[Datekey],-1,day))

Now that you know how to shift the date context, let’s look at functions you can use

in your filters that return a single date.

 Using Single Date Functions
DAX contains a set of functions that return a single date. These are typically used when

filtering the date context. For example, the FIRSTDATE function returns the first date in

the column of dates passed to it. As an example, you can use this in combination with

Figure 7-11. Calculating year over year monthly growth

Chapter 7 InCorporatIng tIme IntellIgenCe

162

the DATESBETWEEN function to get the range of dates from the 1st day to the 15th day of

the current date context set of dates:

DATESBETWEEN('Date'[FullDateAlternateKey]

 ,FIRSTDATE('Date'[FullDateAlternateKey])

,DATEADD(FIRSTDATE('Date'[FullDateAlternateKey]), 14, DAY))

This can then be used as a filter in the CALCULATE function to get the sales during the

first 15 days of the period. The resulting pivot table is shown in Figure 7-12.

If you are just looking at the monthly periods, you can use the functions

STARTOFMONTH and ENDOFMONTH (there are ones for year and quarter also). The following

expression is used to calculate the sum of the sales for the last 15 days of the month:

Last 15 Day Sales=CALCULATE(SUM(InternetSales[SalesAmount]),

 DATESBETWEEN('Date'[FullDateAlternateKey]

 , DATEADD(ENDOFMONTH('Date'[FullDateAlternateKey]), -14, DAY)

,ENDOFMONTH('Date'[FullDateAlternateKey])))

Figure 7-12. Calculating sales for the first 15 days of the month

Chapter 7 InCorporatIng tIme IntellIgenCe

163

Although the majority of measures you need to aggregate from a lower level to a

higher level (e.g., from days to months) are simple extensions of the base aggregate, at

times you need to use special aggregations to roll up the measure. This type of measure

is considered semi-additive and is covered in the next section.

 Creating Semi-additive Measures
You often encounter semi-additive measures when analyzing data. Some common

examples are inventory and account balances. For example, to determine the total

amount of inventory at a current point in time, you add the inventory of all stores. But to

find the total inventory of a store at the end of the month, you don’t add up the inventory

for each day.

To deal with these situations, DAX contains the FIRSTNONBLANK and LASTNONBLANK

functions. These functions return the first or last date for a nonblank condition. For

example, the following expression determines the last nonblank date for the product

inventory entries:

LASTNONBLANK ('Date'[DateKey],CALCULATE (SUM(Inventory[UnitsInStock]))

This is then combined with the CALCULATE function to determine the total units in

stock:

Product Units In Stock=CALCULATE(SUM(Inventory[UnitsInStock]),

 LASTNONBLANK('Date'[DateKey],

 CALCULATE(SUM(Inventory[UnitsInStock]))))

Now if you want to add up the units in stock across products, you can use the

following expression:

Total Units In Stock=SUMX(VALUES('Inventory'[ProductKey]),[Product Units In

Stock])

Figure 7-13 shows the resulting pivot table. Note that the Total Units In Stock

measure is additive across the products but nonadditive across the dates.

Chapter 7 InCorporatIng tIme IntellIgenCe

164

One of the advantages of DAX is that once you learn a pattern, you can extend it

to other scenarios. For example, you can employ the same techniques used in this

inventory calculation when calculating measures in a cash flow analysis. The following

calculation is used to calculate the ending balance:

Balance=CALCULATE (SUM (Finance[Amount]),

 LASTNONBLANK ('Date'[DateKey],

 CALCULATE(SUM (Finance[Amount]))))

In the previous examples, the inventory and balance were only entered as a row

in the table when a change in inventory or balance occurred. Often the balance

or inventory is entered every day, and the same value is repeated until there is

a change. In these cases, you can use the DAX functions CLOSINGBALANCEMONTH,

CLOSINGBALANCEQUARTER, and CLOSINGBALANCYEAR. These functions look at the last date

of the time period and use that as the value for the time period. In other words, whatever

the value is on the last day of the month is returned by the CLOSINGBALANCEMONTH

function.

At this point, you should have a good grasp of how the various time functions work.

In the following lab, you will gain experience implementing some of these functions.

Figure 7-13. Calculating units in stock

Chapter 7 InCorporatIng tIme IntellIgenCe

165

HANDS-ON LAB: IMPLEMENTING TIME INTELLIGENCE IN POWER PIVOT

In the following lab, you will

• Create a date table

• Use time intelligence functions to analyze data

• Create a month over month growth matrix

• Create an inventory level report

 1. In the labStarterFiles\Chapter7lab1 folder, open the Chapter7lab1.pbix file.

this file contains inventory and sales data from the Contoso test database.

 2. Select the model view tab to see the tables and relationships (see Figure 7-14).

notice there is no Date table. We could load one from the data source or create

one in power BI Desktop.

Figure 7-14. The current Contoso data model

Chapter 7 InCorporatIng tIme IntellIgenCe

166

 3. to create the Date table, switch to the Data view. Under the modeling tab,

select new table.

 4. enter the following DaX to create the set of dates based on the minimum and

maximum sales dates:

Calendar = CALENDAR(Min('Sales'[DateKey]),MAX(Sales[DateKey]))

 5. Under the modeling tab, select mark as date table. make sure the Calendar

table is marked as the Date table and the Date column is selected as the Date

column.

 6. Using DaX, add a Year, month, and month no column to the Calendar table (this

was covered in Chapter 5).

 7. Sort the month column by the month no column and format the Date column to

show the date with no time.

 8. Create a relationship between the Sales table and Calendar table (see Figure 7- 15).

Figure 7-15. Creating the relationship between the Sales and Date table

Chapter 7 InCorporatIng tIme IntellIgenCe

167

 9. Select the Sales table in the Data view window. add the following measures

and format them as currency:

Sum of Sales=SUM(Sales[SalesAmount])

YTD Sales=TOTALYTD([Sum of Sales],'Calendar'[Date])

MTD Sales=TOTALMTD([Sum of Sales],'Calendar'[Date])

 10. to test the measures, switch to the report view and create a matrix like the one

shown in Figure 7-16.

Figure 7-16. Verifying the year-to-date sales measure

Chapter 7 InCorporatIng tIme IntellIgenCe

168

 11. Switch back to the Sales table in the Data tab. Create a rolling three-month

sales measure with the following expression. Format the measure as currency:

Rolling 3 Month Sales=CALCULATE([Sum of Sales],

DATESINPERIOD('Calendar'[Date],LASTDATE('Calendar'[Date]),-3,MONTH))

 12. add the measure to the matrix you created and verify it is working as expected.

 13. next, you want to compare sales growth from one month to the next. First,

create a previous month’s sales measure in the Sales table:

Prev Month Sales=CALCULATE([Sum of Sales],

PARALLELPERIOD('Calendar'[Date],-1,MONTH))

 14. next, use the previous sales and current sales to create a sales growth

measure. Format the measure as percent.

Monthly Sales Growth = Divide

([Sum of Sales] - [Prev Month Sales],[Prev Month Sales],BLANK())

 15. Create a new page in report view and add a matrix like the one shown in

Figure 7-17 to test your results.

Chapter 7 InCorporatIng tIme IntellIgenCe

169

 16. to investigate semi-additive measures, you are going to create a pivot table

that shows inventory counts. First, create a relationship between the Inventory

and Calendar tables.

 17. add the following inventory count measure to the Inventory table:

Inventory Count = SUM('Inventory'[UnitsInStock])

 18. to test the measures, create a new report page as shown in Figure 7-18. If you

look at the monthly totals, they are adding up the inventory for the days in the

month. What we want is to carry over the last entry as the inventory for the

month.

Figure 7-17. Testing the Monthly Sales Growth measure

Chapter 7 InCorporatIng tIme IntellIgenCe

170

 19. Using the last nonblank filter and the CALCULATE function, you can calculate

the last nonblank quantity for a product. add the following measure to the

Inventory table:

Product Quantity = CALCULATE([Inventory Count],LASTNONBLANK('Calendar'

[Date],[Inventory Count]))

 20. Verify the results by adding the product Quantity measure to the matrix.

 21. the final step is to add up the inventory across all the stores selected using the

following measure:

Inventory Level=SUMX(Values(Store[StoreKey]),[Product Quantity])

 22. to test the measure, create a report page like the one in Figure 7-19.

Figure 7-18. Testing the inventory count measure

Chapter 7 InCorporatIng tIme IntellIgenCe

171

 23. notice currently blanks are being treated as zero inventory. You can fix this by

replacing any blanks with the previous value.

 Summary
This chapter provided you with the basics you need to successfully incorporate

datetime-based analysis using Power Pivot and DAX. You should now understand how

to shift the date context to compare measures based on parallel periods. You should also

feel comfortable aggregating measures using the period-to-date DAX formulas. When

you combine the concepts you learned in Chapter 6 and this chapter, you should start to

recognize patterns in your analysis. Based on these patterns, you can identify the DAX

template you need to solve the problem.

Now that you are familiar with how to create a solid data model in Power BI, you are

ready to create interactive reports. Power BI has a very rich set of interactive visuals you

can use to view and gain insight into the data. These visuals can then be deployed to the

Power BI portal, where they can be used to create powerful dashboards and shared with

others.

Figure 7-19. Testing the inventory measure

Chapter 7 InCorporatIng tIme IntellIgenCe

173
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_8

CHAPTER 8

Creating Reports with
Power BI Desktop
In the previous chapters, you saw how to import, clean, and shape data using Power

BI Desktop. In addition, you created the data model and augmented it with calculated

columns and measures. In this chapter, you will investigate some of the common

visualizations used to create reports in Power BI Desktop. You will become familiar with

how to control visual interactions, along with report filtering. You will build standard

visualizations such as column, bar, and pie charts. In addition, you will look at line and

scatter charts. Finally, you will investigate how to use maps to analyze data geographically.

After completing this chapter, you will be able to

• Create tables and matrices

• Construct bar, column, and pie charts

• Build line and scatter charts

• Create map-based visualizations

Note For copies of color figures, go to Source Code/Downloads at https://
github.com/Apress/beginning-power-bi-3ed.

 Creating Tables and Matrices
Although it is one of the most basic types of data visualization, a table is still one of

the most useful ways to look at your data. This is especially true if you need to look up

detailed information. To create a visual on the report page, select the Report view.

https://github.com/Apress/beginning-power-bi-3ed
https://github.com/Apress/beginning-power-bi-3ed

174

In this view, you will see a Visualizations toolbox and a Fields list on the right side of the

designer (see Figure 8-1).

Figure 8-1. The Visualizations toolbox

Chapter 8 Creating reportS with power Bi DeSktop

175

Selecting the table visualization will reveal a Values drop area where you will drag

fields from the Fields list and drop them into the Values area. This will create a table with

the fields as columns. Figure 8-2 shows a table displaying customer contact information.

When you combine a table with the automatic filtering you get with Power BI, this

becomes a great way to look up customers based on their demographic data. When you

select the table in the view, you will see a Filters pane to the left of the Visualizations

toolbox (see Figure 8-3). The fields in the table will show up automatically in the table

filter list. To add a field to the filter list that you want to filter on but don’t want to show

up in the table, just drag the field from the Fields list to the Filters area. Along with visual

level filters, you can filter all visuals on a page and all visuals on all pages of the report.

Figure 8-2. Customer contact information

Chapter 8 Creating reportS with power Bi DeSktop

176

Figure 8-3. Filtering a table

Chapter 8 Creating reportS with power Bi DeSktop

177

If you click the Format tab in the Visualizations toolbox (signified by a paint roller),

you will see a pretty extensive set of formatting options available (see Figure 8-4).

Figure 8-5 shows a formatted table using one of the built-in styles.

Figure 8-4. Table formatting options

Chapter 8 Creating reportS with power Bi DeSktop

178

A matrix is similar to a table in that it contains rows and columns, but instead of

showing detail-level records, it aggregates data up by the fields displayed in the row and

column headers. You can format a matrix just like the table. You also have the option to

show or hide the totals. Figure 8-6 shows a matrix with the row totals turned on and the

column totals turned off.

Figure 8-5. A formatted table

Figure 8-6. Matrix showing sales amount by quarter and reseller type

Chapter 8 Creating reportS with power Bi DeSktop

179

There are many formatting options available such as the ability to expand and

collapse by the various row and column headers. These features vary by visual and you

should spend some time investigating these.

In addition to wanting to see aggregated values in a matrix, you often want to show

these values using a visual representation such as a bar, column, or pie chart. The next

section looks at creating those.

 Constructing Bar, Column, and Pie Charts
Some of the most common data visualizations used to compare data are the bar,

column, and pie charts. A bar chart and a column chart are very similar. The bar chart

has horizontal bars where the x-axis is the value of the measure and the y-axis contains

the categories you are comparing. For example, Figure 8-7 shows a bar chart comparing

sales by country.

The column chart switches the axes so that the measure amounts are on the y-axis

and the categories are on the x-axis. For example, the bar chart in Figure 8-7 can just as

easily be displayed as a column chart, as shown in Figure 8-8.

Figure 8-7. Bar chart comparing sales by country

Chapter 8 Creating reportS with power Bi DeSktop

180

There are three types of bar or column charts to choose from: stacked, 100% stacked,

and clustered. Figure 8-8 is a stacked column chart that doesn’t have a field for the legend.

If you drag the Year field to the Legend drop area, it changes the visualization to the one

shown in Figure 8-9. Note that the values for each year are stacked on top of each other.

Figure 8-8. A column chart comparing sales by country

Figure 8-9. Creating a stacked column chart

Chapter 8 Creating reportS with power Bi DeSktop

181

Although the stacked column chart shows absolute values, you can change it to a

100% stacked chart to show relative values in terms of percentages. In Figure 8-10, the

Country field is moved to the Legend and the Year field is placed on the axis. It also has

data labels set as Visible for easier comparisons.

A clustered column chart moves the columns for the various countries side by side

instead of stacking them on top of one another. Figure 8-11 shows the same information

as Figure 8-9 but as a clustered column chart.

Figure 8-10. Creating a 100% stacked column chart

Chapter 8 Creating reportS with power Bi DeSktop

182

With Power BI Desktop, you have lots of control over the layout of the charts. On the

Format tab in the Visualizations toolbox, you can control things such as Title, Legend,

and Data colors (see Figure 8-12).

Figure 8-11. Creating a clustered column chart

Chapter 8 Creating reportS with power Bi DeSktop

183

Figure 8-12. Controlling the Legend layout

A nice feature associated with the bar and column charts is the ability to add reference

lines to aid in the data analysis. If you select the Analytics tab in the Visualizations toolbox

(see Figure 8-13), you see the various lines you can add. Figure 8- 14 shows a column

chart with the average line displayed.

Chapter 8 Creating reportS with power Bi DeSktop

184

Figure 8-13. Adding reference lines to a chart

Chapter 8 Creating reportS with power Bi DeSktop

185

As with most visualizations, in Power BI you get automatic filtering and sorting

capabilities. For example, if you select the chart and click the ellipses in the upper right

corner of the chart, you get the option to change the sorting by Sales Amount instead of

by Country name (see Figure 8-15).

Figure 8-14. Displaying the average reference line

Figure 8-15. Changing the sorting of a column chart

Chapter 8 Creating reportS with power Bi DeSktop

186

Pie charts are similar to stacked column or stacked bar charts in that they allow you

to compare the measures for members of a category and also the total for the category.

Figure 8-16 shows a pie chart comparing sales of different types of resellers.

Although pie charts are quite common, they can give misleading results because of the

shape of the wedges and the way humans perceive them. A similar but better type of chart

to use is the donut chart. Figure 8-17 shows the same data visualized as a donut chart.

Figure 8-16. Comparing data using a pie chart

Figure 8-17. Comparing data using a donut chart

Chapter 8 Creating reportS with power Bi DeSktop

187

Just as with column and bar charts, you have lots of control over the layout of the pie

and donut charts, including data labels, data colors, and positioning of the title and the

legend.

Although bar, column, pie, and donut charts are great for comparing aggregated data

for various categories, if you want to spot trends in the data, line and scatter charts are a

better choice. You will investigate these types of charts next.

 Building Line and Scatter Charts
A line chart is used to look at trends across equal periods. The periods are often time units

consisting hours, days, months, and so on. The time periods are plotted along the x-axis,

and the measurement is plotted along the y-axis. Figure 8-18 shows order quantity by

month. Each line represents a different year. Using this chart, you can easily spot trends,

such as order quantities being up in 2013, while the overall trend is very similar to 2012.

If you need to compare trending of two measures at the same time, you can use

a scatter chart. Scatter charts plot one measure along the y-axis and the other along

the x-axis. To create a scatter chart, select a category field and two numeric fields—for

example, reseller name (category), sales amount (numeric), and sales profit (numeric).

Figure 8-19 shows the resulting scatter chart.

Figure 8-18. Spotting trends using a line chart

Chapter 8 Creating reportS with power Bi DeSktop

188

Using a scatter chart, you can easily spot trends and outliers that don’t follow the trend.

If you look at the Field drop area for the scatter chart (see Figure 8-20), you see both

Size and Legend drop areas. You can add another measure to the Size drop box and

another category to the Legend drop box.

Figure 8-19. Comparing data in a scatter chart

Chapter 8 Creating reportS with power Bi DeSktop

189

Once you add the size axis to the scatter chart, it becomes a bubble chart. Figure 8-21

shows a bubble chart where the size of the bubble represents the number of employees

of the reseller and the color represents the reseller’s business type.

Figure 8-20. Adding size and color to a scatter chart

Chapter 8 Creating reportS with power Bi DeSktop

190

If you look at the drop area for the scatter chart, you should see another drop box

labeled play axis. You can drop a time-based field in this box, which results in a play axis

being placed below the scatter chart. A play axis allows you to look at how the measures

vary over time. It allows you to play, pause, and retrace the changes as you perform your

analysis. If you click one of the bubbles in the chart, you can see a trace of the changes

that occurred over the time period. Figure 8-22 shows a bubble chart that can be used to

analyze how sales for different countries compare over time.

Figure 8-21. Comparing data in a bubble chart

Chapter 8 Creating reportS with power Bi DeSktop

191

In addition to the standard visualizations for comparing data, Power BI Desktop

allows you to look at data geographically using maps. You will see how to create map-

based visualizations in the next section.

 Creating Map-Based Visualizations
One of the nice features of Power BI is that it can use map tiles to create visualizations. If

your data contains a geographic field such as city, state/province, and country, it’s very

easy to incorporate the data into a map. You can tell whether a field can be geolocated by

a globe icon in the field list (see Figure 8-23).

Figure 8-22. Adding a play axis to a bubble chart

Chapter 8 Creating reportS with power Bi DeSktop

192

There are currently two types of maps in Power BI: map and filled map. When you

use a map, the locations show up on the map as bubbles with sizes indicating the value

of the measure. Figure 8-24 shows number of customers by city, where the map is

zoomed in to the Bay Area in Northern California.

Figure 8-23. The globe icon indicates fields that can be mapped

Chapter 8 Creating reportS with power Bi DeSktop

193

If you look at the Field drop areas of the map, you should see Longitude and Latitude

drop boxes; this feature allows you to create precise location points on the map. There

is also a Legend drop area where you can drop a category field. That will convert the

bubbles on the map into pie charts showing each category (see Figure 8-25).

Figure 8-24. Viewing data on a map

Chapter 8 Creating reportS with power Bi DeSktop

194

A filled map uses geospatial areas rather than bubbles on the map. Common areas

used are continent, country, region, state, city, or county. Figure 8-26 shows the number

of customers in the Western states of the United States. The darker the shading, the

larger the number of customers for the state.

Figure 8-25. Adding a category to the map

Chapter 8 Creating reportS with power Bi DeSktop

195

Another type of map (officially, this is in preview at the time of this book’s

publication) is the shape map. Shape map visuals are based on ESRI/TopoJSON maps.

They give you the ability to use custom maps that you can create, such as geographical,

seating arrangements, floor plans, and more. Figure 8-27 shows the number of

customers in various San Francisco neighborhoods.

Figure 8-26. Creating a filled map

Chapter 8 Creating reportS with power Bi DeSktop

196

Up to this point, you have created each of the visualizations as a standalone chart or

graph. One of the strengths of Power BI is its ability to tie these visualizations together to

create interactive reports for data exploration.

 Linking Visualizations in Power BI
A great feature of Power BI is that if the data model contains a link between the data

used to create the various visualizations, Power BI will use the relationship to implement

interactive filtering. Interactive filtering is when the process of filtering one visualization

automatically filters a related visualization. For example, Figure 8-28 shows a bar chart

that displays sales for the different product categories from the Adventure Works sample

database and a column chart that shows various countries’ sales.

Figure 8-27. Using custom shapes

Chapter 8 Creating reportS with power Bi DeSktop

197

Because the Sales table is related to the SalesTerritory table and the Product table, if

you select one of the Product category bars, it will highlight the bar chart to show sales

for that category (see Figure 8-29).

Figure 8-28. Adding related visualizations to the same page

Chapter 8 Creating reportS with power Bi DeSktop

198

The filtering works both ways, so you can click one of the columns in the lower chart,

and it will filter the top chart to show sales for that country. This interactive filtering

works for most types of visualizations available in Power BI. Figure 8-30 shows a bubble

chart and a table. When you click a bubble, the table is filtered to show the detail records

that make up the bubble values.

Figure 8-29. Interactive filtering of related visualizations

Chapter 8 Creating reportS with power Bi DeSktop

199

You can control the visual interactions between visuals by selecting a visual and then

clicking the Format tab. The other visuals on the page will then display three icons (see

Figure 8-31). Clicking the first one will cause it to filter, clicking the second will cause it to

highlight as in Figure 8-29, and clicking the third icon will turn off the interaction.

Figure 8-30. Filtering to show the details that make up the bubble values

Chapter 8 Creating reportS with power Bi DeSktop

200

Figure 8-31. Controlling visual interaction

Chapter 8 Creating reportS with power Bi DeSktop

201

Along with built-in visual interaction, another powerful feature of Power BI visuals is

the ability to drill down and up through hierarchies, the topic of the next section.

 Drilling Through Visualizations
A great feature built-in to most Power BI visualizations is the ability to drill down and

up through the various detail levels. This is useful when you have hierarchies such as

month, quarter, and year, or products, categories, and subcategories. To enable drilling,

just place the different levels of the hierarchy in the appropriate well, depending on the

visual. Figure 8-32 shows a hierarchy placed in the Axis well of a columnar chart. You can

control the drill through actions using the icons at the top of the chart.

You can also control the drilling action under the Visual tools ➤ Data/Drill tab (see

Figure 8-33). You have the option of showing the next level or expanding to the next level.

For example, if you select Show next level and select Canada, it will drill through to show

provinces in Canada. If you select Expand next level, it will show all states/provinces for

all countries.

Figure 8-32. Enabling drilling on a column chart

Chapter 8 Creating reportS with power Bi DeSktop

202

Now that you have seen how to create some of the visualizations available in Power

BI, it is time to get some hands-on experience by creating a few.

HANDS-ON LAB: CREATING VISUALIZATIONS IN POWER BI DESKTOP

in the following lab, you will

• Create standard visuals

• Create a map-based visualization

• explore visual interactions

 1. in the LabStarterFiles\Chapter8Lab1 folder, open the Chapter8Lab1.pbix file.

this file contains 311 call center data for San Francisco.

 2. on the left side of the designer, select the report view. You should see a blank

report page.

 3. in the Visualizations toolbox, select the table visualization. Create a table that

lists type of request, ave Days open CY, and ave Days open pY.

 4. in the Filters pane, filter the table to only show cases where the Status is

closed. Format the table with alternating rows and change the font size to 10.

Your table should look like Figure 8-34.

Figure 8-33. Controlling drilling actions

Chapter 8 Creating reportS with power Bi DeSktop

203

 5. Click an empty area of the report page and select the 100% stacked bar chart

from the Visualizations toolbox.

 6. add the number of Cases to the Values well, the type to the axis well, and the

Year to the Legend well.

 7. Change the data colors to gold and orange and turn on the data labels. Change

the data labels to black. Your chart should be similar to Figure 8-35.

Figure 8-34. Creating a table

Figure 8-35. Creating a 100% stacked bar chart

Chapter 8 Creating reportS with power Bi DeSktop

204

 8. Select a blank area of the page and click the treemap visual in the toolbox.

add the number of Cases to the Values well and the neighborhood to the

group well.

 9. note that when you hover over the neighborhood areas, the tooltip shows the

neighborhood and the number of cases. You can also add additional information

to the tooltip. add the ave Days open to the tooltips well. Your final chart should

look similar to Figure 8-36.

 10. if you click one of the neighborhood blocks, you should see that the table and

bar chart are filtered by the neighborhood. in this case, we want to turn off the

filtering for the table.

Figure 8-36. Creating a tree map

Chapter 8 Creating reportS with power Bi DeSktop

205

 11. with the tree map selected, note that a Visual tools ribbon set appears at the

top of the program. go to the Format tab under the Visual tools tab and click the

edit interactions button. You should see the icons above the table to turn on and

off filtering (see Figure 8-37). turn off filtering for the table.

 12. Click the edit interactions button again on the Format tab to turn off the edit

mode. test the filtering by clicking the areas in the tree map. the bar chart

should filter, but the table should not.

 13. Click the plus sign (+) at the bottom of the designer to add a new report page.

 14. on the new page, add a line chart that shows the week ending Date on the

axis and number of Cases as the values. By default, the date becomes a date

hierarchy when it is dropped in the axis well. Change this to show just the week

ending Date by selecting the drop-down next to the axis field (see Figure 8-38).

Figure 8-37. Turning off filtering

Chapter 8 Creating reportS with power Bi DeSktop

206

 15. Click the analytics icon (the magnifying glass in Figure 8-38) and add a trend

line to the graph.

 16. Click a blank area of the page and select a slicer from the Visualizations

toolbox. add the week ending Date to the Fields well. Use the slicer to adjust

the date range in the graph (see Figure 8-39).

Figure 8-38. Showing just the date and not the hierarchy

Chapter 8 Creating reportS with power Bi DeSktop

207

 17. to create a map-based visualization, add a new report page. Select

the Map visual in the Visualizations toolbox (the globe icon). From the

neighborhoodLatLon table, drag the Latitude and Longitude fields to the

Latitude and Longitude field wells (see Figure 8-40).

Figure 8-39. Adjusting the date range of the graph

Chapter 8 Creating reportS with power Bi DeSktop

208

 18. Drag the neighborhood field to the Legend well. From the SF311Calls table,

drag the number of Cases field to the Size well. Your map should look like

Figure 8-41.

Figure 8-40. Adding fields to the map

Chapter 8 Creating reportS with power Bi DeSktop

209

 19. experiment with mapping other fields and zooming to different areas of the

map. review options available under the Format option for the map. when

done, save your changes and exit power Bi Desktop.

 Summary
In this chapter, you have seen how to create various visualizations in Power BI Desktop.

You created basic bar, line, and tree map charts. In addition, you saw how to present

measures tied to a geospatial field on a map. You also saw how to control visual

interactions and drilling functionality in your reports. You are now ready to deploy these

reports to the Power BI portal. Once deployed, you will create interactive dashboards

based on the reports and expose these to others.

Figure 8-41. Mapping the number of cases for each neighborhood

Chapter 8 Creating reportS with power Bi DeSktop

211
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_9

CHAPTER 9

Publishing Reports and
Creating Dashboards in
the Power BI Portal
Now that you know how to create reports in Power BI Desktop, it’s time to publish your

reports for others to use. In this chapter, you will see how to publish reports created in

Power BI Desktop to the Power BI Service (portal). Once the reports are published, you

will create dashboards and share them with colleagues. In addition, you will set up an

automated data refresh schedule.

After completing this chapter, you will be able to

• Create a user-friendly model

• Publish Power BI Desktop files to the Power BI Service

• Add tiles to a dashboard

• Share dashboards

• Refresh data in published reports

 Creating a User-Friendly Model
Before publishing your models and reports for others to use, it is very important that

users of your Power BI models have a pleasant experience as they build and explore the

various visualizations in Power BI. One of the most useful things you can do is rename

the tables and fields so they make sense to business users. You may often find that the

names of the fields in the original source are abbreviated or have cryptic names that only

make sense to the database developers.

212

Another good idea is to only expose fields that users find meaningful. It is always

wise to hide any nonbusiness key values that are used to relate the tables in the model.

To hide a column from clients of the model, right-click the column and select Hide in

Report view (this will turn the column gray in the model designer). Figure 9-1 shows

hiding an EmployeeKey field that has no business relevance.

It’s also a good idea to check the data type and format of the fields in the model.

Depending on the data source, fields may be exported as text fields and need to be

changed in the model. This is particularly true when it comes to date fields. You can use

the Model tab in the Data view of Power BI Desktop to set the data type and format of the

fields.

As you look at the field list in the Data view, notice the icons in front of the fields.

The calculator icon indicates that the field is a measure created in the Power BI model.

The summation symbol indicates that the field is numeric and will be aggregated when

dragged to the Fields drop area. By default, the aggregate is a summation, which may

not be the aggregate needed. In some cases, you don’t want to aggregate a number;

Figure 9-1. Hiding fields in Report view

Chapter 9 publishing reports and Creating dashboards in the power bi portal

213

for example, in the date table, the Year field is not meant to be aggregated. You can

control this behavior in the Power BI model by setting the Summarize By drop-down on

the Modeling tab (see Figure 9-2).

Another setting available on the Modeling tab of Power BI Desktop is the data

category setting for the fields. This comes into play for location types like city, zip codes,

and countries. When Power BI knows the column is a location type, it can use the field to

implement a visualization using Bing mapping layers. The other data categories that are

useful to set are the image and web URLs. When you set these, Power BI will know these

are hyperlinks and format them appropriately (see Figure 9-3).

Figure 9-2. Setting default summarizations for fields

Chapter 9 publishing reports and Creating dashboards in the power bi portal

214

Once you have the model and reports developed in Power BI Desktop, you are ready

to deploy them to the Power BI portal.

 Publishing Power BI Desktop Files to the Power BI
Service
Now that you are ready to deploy the model and reports created in Power BI Desktop

to the Power BI Service, make sure you are signed up for the service. If you are not

signed up for the service through your organization, you can sign up for a free account

at https://powerbi.microsoft.com/en-us/. If you are using a nonwork or school

account, you have to sign up for an Office 365 trial (see https://docs.microsoft.com/

en-us/power-bi/service-admin-signing-up-for-power-bi-with-a-new-office-365-

trial for instructions). Once you have signed up for the account, you can log into the

Figure 9-3. Setting the data category for a field

Chapter 9 publishing reports and Creating dashboards in the power bi portal

https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/power-bi/service-admin-signing-up-for-power-bi-with-a-new-office-365-trial
https://docs.microsoft.com/en-us/power-bi/service-admin-signing-up-for-power-bi-with-a-new-office-365-trial
https://docs.microsoft.com/en-us/power-bi/service-admin-signing-up-for-power-bi-with-a-new-office-365-trial

215

portal through https://app.powerbi.com. Once logged in, you should be on the Home

page by default (see Figure 9-4). (Keep in mind that Microsoft is continuously updating

the Power BI interface. Your view may not match the screenshots exactly.)

Click the My workspace icon on the dashboard. On the left side is a navigation pane.

Expand the My workspace header. You should see headings for dashboards, reports, and

data sets. There is also a button for getting data (see Figure 9-5).

Figure 9-4. The Power BI portal Home page

Chapter 9 publishing reports and Creating dashboards in the power bi portal

https://app.powerbi.com

216

After clicking the Get Data button, you can either discover published content or

create new content (see Figure 9-6). Because you are publishing a Power BI Desktop file,

choose the Files option.

Figure 9-5. The navigation pane in Power BI

Chapter 9 publishing reports and Creating dashboards in the power bi portal

217

After selecting Files, the next step is selecting the location of the file. It can be a local

file, a file stored in OneDrive, or a file stored in SharePoint (see Figure 9-7).

Once you select the file, it is imported into the Power BI Service, and you will see a

new data set, report, and dashboard listed in the navigation pane. Selecting the data set

will present report designer, which is essentially the same as the Report view in Power BI

Desktop. You or a colleague can use this designer to create new reports. Selecting the report

will show the report pages you developed in Power BI Desktop (see Figure 9- 8). The report

is in view mode and is fully interactive. You can switch to edit mode and update the report.

Figure 9-6. Selecting content

Figure 9-7. Selecting the file location

Chapter 9 publishing reports and Creating dashboards in the power bi portal

218

Note any changes to the report are not reflected back to the original power
bi desktop file. You can export the report as a power bi desktop file, but it is a
completely separate file from the original file uploaded to the power bi portal.

Selecting the dashboard will show a dashboard with an empty tile. There are two

ways to add tiles to your dashboard: you can create a new visual by using a natural

language query or pin a visualization from a report. In the next section, you will start

adding tiles to the dashboard.

 Adding Tiles to a Dashboard
After deploying your reports to the Power BI portal, you can use the report visuals to

create your dashboards. When you select a visual in the report, you will see a pin icon in

the upper right corner of the visual (see Figure 9-9).

Figure 9-8. Viewing reports in the Power BI portal

Chapter 9 publishing reports and Creating dashboards in the power bi portal

219

When you click the pin, you are presented with a Pin to dashboard window (see

Figure 9-10). You have the option of pinning the visual to an existing dashboard or

creating a new one.

Figure 9-9. Selecting a visual to add to a dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

220

Once you have pinned the visual to the dashboard, you can navigate to the

dashboard to see the new visual (see Figure 9-11).

If you click the visual in the dashboard, it will automatically take you to the

underlying report where the visual was pinned from.

Figure 9-10. Pinning a visual to a new dashboard

Figure 9-11. Viewing the dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

221

In addition to pinning visuals to dashboards from reports, you can ask a question to

create a visual in the dashboard. Clicking Ask a question about your data at the top of the

dashboard will take you to the Q&A entry screen (see Figure 9-12).

The Q&A screen shows some suggested questions to get you started. Power BI scans

your model and analyzes the tables, fields, and relationships to create these suggestions.

Figure 9-13 shows using the Q&A window used to create a bar chart showing profit by

country. Once you create the visual, you can pin it to the dashboard.

Figure 9-12. Asking questions about the data

Chapter 9 publishing reports and Creating dashboards in the power bi portal

222

If you don’t want to expose the Q&A window to users of your dashboard, you can

turn this feature off in the Dashboard Settings (see Figure 9-14).

Figure 9-13. Creating a bar chart using Q&A

Chapter 9 publishing reports and Creating dashboards in the power bi portal

223

In addition to adding visuals to the dashboard, you can add media tiles to the

dashboard, including text, images, video, and web content. Clicking the Add tile link at

the top of the dashboard launches the Add tile window where you can select the media

type you want to add (see Figure 9-15).

Figure 9-14. Turning off the Q&A option

Chapter 9 publishing reports and Creating dashboards in the power bi portal

224

Once you have added the tiles to the dashboard, you can rearrange and resize the

tiles. Figure 9-16 shows a completed dashboard containing a text tile and two visual tiles.

Once the dashboard has been created and designed the way you want it, you are

ready to share it with your colleagues.

Figure 9-15. Adding media tiles

Figure 9-16. A completed dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

225

 Sharing Dashboards
You can share dashboards with colleagues both in and outside your organization if they

have signed up for the Power BI Service. When you share a dashboard, users can view

and interact with the dashboard, but they cannot edit it or create their own copies. To

share the dashboard, click the Share link in the upper right corner of the dashboard

(refer to Figure 9-14). Using the Share dashboard window, enter the email address of

the users you want to share it with. You can also control whether they can share the

dashboard, build new content with the underlying data sets, and whether to send them

an email indicating that the dashboard has been shared with them (see Figure 9-17).

Figure 9-17. Sharing a dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

226

After the dashboard is shared, recipients will see the dashboard by selecting the

Shared with me header in the portal explorer pane (see Figure 9-11).

One thing to be aware of is that although the underlying reports don’t show up in the

navigation pane, users can view them by clicking the visuals in the dashboard.

Although sharing dashboards is useful for exposing dashboards to end users, many

times you’ll want to collaborate with colleagues and allow them to make changes to the

reports and dashboards. This is where Power BI groups are very useful. Because Power BI

groups are based on Office 365 groups, group members must be in the same Office 365

tenant. Group members must also have a Power BI Pro license (currently $10/month).

When you create a group, a group workspace is created where members can create and

edit reports and dashboards.

To get to your group workspaces, expand the workspace node in the navigation pane

(see Figure 9-18).

If you need to expose your reports to the public, you can publish the report to the

Web. When viewing the report in the portal, click File ➤ Publish to web (see Figure 9-19).

Figure 9-18. Using group workspaces

Chapter 9 publishing reports and Creating dashboards in the power bi portal

227

When publishing to the Web, you can either provide a link where it will be open in its

own web page or host it in an iframe as part of another web page (see Figure 9-20).

Figure 9-19. Publishing a report to the Web

Chapter 9 publishing reports and Creating dashboards in the power bi portal

228

Now that you have seen how to publish and share your reports and dashboards, it’s

time to see how to keep the data up to date.

 Refreshing Data in Published Reports
Keeping your data fresh in your reports and dashboards is critical for making informed

decisions and investigating trends. How you refresh the data depends on the source and

its volatility. Some data doesn’t change much and can be refreshed weekly or monthly.

Some sources can be updated daily or hourly, whereas others may need to be as close to

live as possible. You need to carefully consider the business requirement for refreshing

the data. Often a business user will claim they need live data without weighing the

complexity and overhead this requires.

Although we’re not going to cover every data source scenario, you should be aware

of a few common ones. If your data source is a file on OneDrive, by default the data

is refreshed hourly. You can turn this off and opt for a manual refresh if you want. If

your data source is a web service like Salesforce or Microsoft Project Online, the data

is automatically refreshed at a rate that depends on the provider. If your data is from

a database in the cloud such as SQL Azure, you can schedule a data refresh. If you are

connecting to an on-premises database, you will need to install a data gateway before

you can schedule a data refresh.

Figure 9-20. Getting a public link to a report

Chapter 9 publishing reports and Creating dashboards in the power bi portal

229

To schedule a data refresh, in the navigation pane in the Power BI portal, select a

data set and click the ellipses to the right of the data set node. In the pop-up menu (see

Figure 9-21), you can choose to do a manual refresh or set up a scheduled refresh.

When you choose SCHEDULE REFRESH, you will see a window where you can

set up the refresh frequency. You can set up a daily refresh and indicate what times to

refresh the data (see Figure 9-22). You can also set up a weekly refresh and indicate what

days of the week to refresh the data.

Figure 9-21. Refreshing a data set

Chapter 9 publishing reports and Creating dashboards in the power bi portal

230

If you are connecting to an on-premises data set, you will need to install a gateway.

Clicking the down arrow in the upper right corner of the Power BI portal displays a menu

where you can choose to install a data gateway (see Figure 9-23).

Figure 9-22. Setting up a refresh schedule

Chapter 9 publishing reports and Creating dashboards in the power bi portal

231

Once the gateway is installed, click the sprocket icon and select the Manage gateways

link (see Figure 9-24).

Figure 9-23. Installing a data gateway

Chapter 9 publishing reports and Creating dashboards in the power bi portal

232

In the Gateway Settings window, select Add data sources to use the gateway. In the

Data Source Settings window, name the data source and select the type of data source

(see Figure 9-25).

Figure 9-24. Managing gateways

Chapter 9 publishing reports and Creating dashboards in the power bi portal

233

Figure 9-25. Adding a data source to the gateway

Chapter 9 publishing reports and Creating dashboards in the power bi portal

234

After selecting a data source type, you need to provide a connection string and

credentials. Figure 9-26 shows setting up a connection to a local file.

Figure 9-26. Connecting to a local file

Chapter 9 publishing reports and Creating dashboards in the power bi portal

235

This chapter has showed you how to create, publish, and share your reports on

the Power BI portal. It’s time to get some hands-on experience publishing reports and

creating dashboards.

HANDS-ON LAB: CREATING DASHBOARDS ON THE POWER BI PORTAL

in the following lab, you will

• publish a report to the portal

• Create a dashboard on the portal

• set up a data refresh schedule

 1. in the labstarterFiles\Chapter9lab1 folder, open the Chapter9lab1.pbix file.

this file contains sales data from northwind traders. You should see a basic

report, as shown in Figure 9-27.

Figure 9-27. Sample sales report

Chapter 9 publishing reports and Creating dashboards in the power bi portal

236

 2. if you are not signed into the power bi service, click File ➤ sign in (see

Figure 9-28).

Figure 9-28. Sign in to the Power BI Service

Chapter 9 publishing reports and Creating dashboards in the power bi portal

237

 3. after signing in, click the publish button on the home tab. select My workspace

as the destination.

 4. once published, click the link to open the report in power bi (see Figure 9-29).

 5. in the report view, hover over the sales by Year/Month chart. You should see a

pin icon in the upper right corner (see Figure 9-30).

Figure 9-29. Opening the report in Power BI

Figure 9-30. Pinning a tile to a dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

238

 6. in the pin to dashboard window, select a new dashboard and name it northwind

sales (see Figure 9-31).

 7. add the order Count by Category/product to the northwind sales dashboard.

 8. expand the navigation pane and select the northwind sales dashboard (see

Figure 9-32).

Figure 9-31. Creating a new dashboard

Figure 9-32. Viewing the dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

239

 9. Click the ask a question about your data link. enter product that is discontinued

by unit in stock descending. You should see a table as shown in Figure 9-33.

pin this table to the dashboard.

 10. exit the Q&a window to go back to the dashboard. hover the mouse pointer

over the new tile and click the ellipses in the upper right corner. a menu is

displayed, as shown in Figure 9-34.

Figure 9-33. Using Q&A to create a table

Figure 9-34. Displaying a tile menu

Chapter 9 publishing reports and Creating dashboards in the power bi portal

240

 11. select edit details. Change the title and put a check mark in display last refresh

time, as shown in Figure 9-35.

 12. add a text box tile and rearrange and resize the tiles so that your final

dashboard looks like Figure 9-36.

Figure 9-35. Editing the tile details

Chapter 9 publishing reports and Creating dashboards in the power bi portal

241

 13. to set up a refresh schedule, in the navigation pane, click the ellipses to the right

of the data set and click sChedule reFresh in the menu (see Figure 9- 37).

Figure 9-36. The final dashboard

Chapter 9 publishing reports and Creating dashboards in the power bi portal

242

 14. in the resulting window, expand the data source credentials node and click the

edit credentials link. Make sure authentication method is set to anonymous and

the privacy level is set to public before signing in (see Figure 9-38).

Figure 9-37. Displaying the data set menu

Chapter 9 publishing reports and Creating dashboards in the power bi portal

243

 15. Create a refresh schedule that runs daily at 7:00 a.m. (see Figure 9-39).

Figure 9-38. Editing the data source credentials

Chapter 9 publishing reports and Creating dashboards in the power bi portal

244

Figure 9-39. Creating a daily refresh

Chapter 9 publishing reports and Creating dashboards in the power bi portal

245

 Summary
In this chapter, you have seen how to publish reports created in Power BI Desktop to

the Power BI Service (portal). You created dashboards and saw how to share them with

colleagues. You also learned how to set up an automated data refresh schedule.

While Power BI reports and dashboards are excellent tools for sharing data insights

with others, they are not the only tools in your arsenal. Excel is one of the most used

data analytic tools in the world. If you are a hard-core data analyst, it is probably your

preferred tool for discovering insights and trends into your data. The good news is that

many of the features of Power BI have been incorporated into Excel. In the next chapter,

you will learn how to use these features.

Chapter 9 publishing reports and Creating dashboards in the power bi portal

247
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_10

CHAPTER 10

Introducing Power
Pivot in Excel
As you have seen in the previous chapters, Power BI is an excellent tool for developing

analytic solutions. The Power BI portal is where you can host, share, and secure

interactive dashboards and reports with others. Power BI Desktop is where you create

the model and visuals on which the dashboards in the portal are based. It is great for

sharing the results of your analysis with a broader audience. But where it is lacking

(arguably) is when you need to perform pure data discovery. This is where most analysts

turn to Excel. The great thing about Excel is that it uses the same tools you’ve been using

in Power BI Desktop. It uses Power Query to get, clean, and shape the data. It then uses

a Power Pivot Model Designer to construct a tabular model on top of which you create

interactive pivot tables to explore the data.

This chapter introduces you to using Power Query and Power Pivot in Excel.

Hopefully, this will be a familiar experience and be intuitive after working with these

tools in Power BI Desktop.

After reading this chapter, you will be familiar with the following:

• Setting up the Power Pivot environment

• Getting, cleaning, and shaping data

• Creating table relationships

• Adding calculations and measures

• Incorporating time-based analysis

248

 Setting Up the Power Pivot Environment
Power Pivot is a free add-in to Excel and has been available since Excel 2010. If you are

using Excel 2010, you must download and install the add-in from the Microsoft Office

web site. If you are using Excel 2013, the add-in is already installed, and you just have

to enable it. If you are using Excel 2016 or Excel for Microsoft 365 (the version covered

in this book), it is already installed and enabled for you. To check what edition you have

installed, click the File menu in Excel and select the Account tab, as shown in Figure 10- 1.

On the Account tab, click the About Excel button. You are presented with a screen

showing version details, as shown in Figure 10-2. Take note of the edition and the

version. Although the 32-bit version will work fine for smaller data sets, to get the

optimal performance and experience from Power Pivot, you should use the 64-bit

version running on a 64-bit version of Windows with at least 8 GB of RAM.

Figure 10-1. Checking the Excel version

Chapter 10 IntroduCIng power pIvot In exCel

249

Once you have determined that you are running the correct version, you can

enable/disable the Power Pivot add-in by clicking the File menu and selecting the

Options tab. In the Excel Options window, click the Add-ins tab. In the Manage

drop-down, select COM Add-ins and click the Go button (see Figure 10-3).

Figure 10-2. Checking the Excel edition and version

Chapter 10 IntroduCIng power pIvot In exCel

250

You are presented with the COM Add-ins window (see Figure 10-4). Make sure

Microsoft Power Pivot for Excel is checked and click OK.

Figure 10-3. Managing COM Add-ins

Chapter 10 IntroduCIng power pIvot In exCel

251

Now that you have ensured that the Power Pivot add-in for Excel is enabled, you are

ready to get some data.

 Getting, Cleaning, and Shaping Data
The Power Query interface in Excel is very similar to the Power Query interface used in

Power BI Desktop (discussed in Chapter 3). As discussed in that chapter, the first step in

creating a data analytics solution is importing data. When you open Excel, you will see a

Data tab where you can start importing the data (see Figure 10-5).

Figure 10-4. Selecting the Power Pivot add-in

Figure 10-5. The Data tab in Excel

Chapter 10 IntroduCIng power pIvot In exCel

252

If you select the Get Data drop-down in the Get & Transform Data area of the tab,

you can see the variety of data sources available to you. You can get data from the Web,

files, databases, and a variety of other sources (see Figure 10-6).

The type of data source you choose will dictate what information you need to supply

to gain access to the data source. For example, an SQL Server database requires log-in

credentials, whereas a CSV file requires the file path. Once you connect to a data source,

a window will launch displaying a sample of the data. Figure 10-7 shows the data

contained in a CSV file.

Figure 10-6. Some of the many data sources available in Excel

Chapter 10 IntroduCIng power pIvot In exCel

253

After previewing the data, you can either load it directly into the data model or edit

the query before loading the data. Clicking Transform Data will launch the familiar

Power Query Editor where you can transform, cleanse, and filter the data before

importing it into the data model (see Figure 10-8).

Figure 10-7. Data from a CSV file

Figure 10-8. The Power Query Editor

Chapter 10 IntroduCIng power pIvot In exCel

254

Some common transformations you will perform are removing duplicates, replacing

values, removing error values, and changing data types. When you launch the Query

Editor window, you will see several steps may have been applied for you, depending on

the data source. For example, Figure 10-9 shows data from a CSV file. In the applied steps

list, you can see Promoted Headers and Changed Type have been applied.

Figure 10-9. Steps added to the query

Chapter 10 IntroduCIng power pIvot In exCel

255

Often you need to replace values from source systems so that they are consistent.

For example, some rows have a country abbreviation, and some have the full name. You

can easily replace these values as the data is imported by selecting the column and then

selecting the Replace Values transformation in the menu. This launches a window to

enter the values to find and what to replace them with (see Figure 10-10).

Figure 10-10. Replacing values in a column

Chapter 10 IntroduCIng power pIvot In exCel

256

As you apply the data transformations and filtering, the Query Editor lists the steps

you have applied. This allows you to organize and track the changes made to the data.

You can rename, rearrange, and remove steps by right-clicking the step in the list (see

Figure 10-11).

Figure 10-11. Managing the query steps

Chapter 10 IntroduCIng power pIvot In exCel

257

Sometimes a source may provide you with data in a column that needs to be split

up among several columns. For example, you may need to split the city and state, or the

first name and last name. To do this, select the column in the Query Editor, and on the

Home tab, choose Split Column. You can either split the column by a delimiter or by the

number of characters (see Figure 10-12).

Figure 10-12. Splitting a column using a delimiter

Chapter 10 IntroduCIng power pIvot In exCel

258

Another common scenario is the need to group and aggregate data. For example, you

may need to roll the data up by month or sales territory, depending on the analysis. To

aggregate and group the data in the Query Editor, select the column you want to group

by and select the Group By transform in the Home tab. You are presented with a Group

By Editor window (see Figure 10-13).

These are just a few of the data-shaping features exposed by the Power Query Editor.

(For a more detailed discussion of Power Query, refer to Chapters 3 and 13.)

Once you have cleaned and shaped the data, you can select the Close & Load option

on the Home tab. This will load the tables into the data model and close the Power

Query Editor. You are now ready to work with the data model to create table relations,

calculated columns, and measures.

 Creating Table Relationships
After the data tables are imported into the data model, you are ready to create the

relationships between the tables. As discussed in Chapter 4, typically you want to set

up your model in a star schema where the fact table is in the center of the star, and the

dimension tables are related to the fact table by keys (see Figure 10-14).

Figure 10-13. Grouping data in Power Query

Chapter 10 IntroduCIng power pIvot In exCel

259

The fact table contains numbers that you need to aggregate. For example, in

the finance table, you have the amount, which is a monetary value that needs to be

aggregated. In a sales fact table, you may have sales amount and item counts. In a

human resources system, you might have hours worked. The dimension tables contain

the attributes that you are using to categorize and roll up the measures. For example,

the financial measures are classified as profit, loss, and forecasted. You want to roll the

values up to the department and organization level and you want to compare values

between months and years.

Figure 10-14. A typical star schema

Chapter 10 IntroduCIng power pIvot In exCel

260

To create a relationship between two tables in the Power Pivot model, select the

Power Pivot tab and click the Manage button (see Figure 10-15).

This opens the Power Pivot model editor. On the right side of the Home tab, you can

switch from the Data view to the Diagram View (see Figure 10-16). By default, Power

Pivot will try to autodetect new relationships when data is loaded. Make sure to double

check these and adjust them if necessary.

Figure 10-15. Launching the model editor

Figure 10-16. Switching to the Diagram view

Chapter 10 IntroduCIng power pIvot In exCel

261

To manage the relationships between the tables, select the Manage Relationships

button in the Design tab. This launches the Manage Relationships window where you

can create new relationships, edit existing relationships, and delete existing relationships

(see Figure 10-17).

Clicking the Edit button presents you with the Edit Relationship window (see

Figure 10-18). This is where you set the tables and key columns used that define the

relationship.

Figure 10-17. Managing table relationships

Chapter 10 IntroduCIng power pIvot In exCel

262

Figure 10-19 shows the resulting relationship in the Relationship view. If you click

the relationship arrow, the two key columns of the relationship are highlighted. You can

also see there is a one-to-many relationship between the Account table and the Finance

table. The many side is indicated by the ∗ symbol.

Figure 10-18. Editing a table relationship

Figure 10-19. Viewing a relationship in the Relationship view

Chapter 10 IntroduCIng power pIvot In exCel

263

The arrow on the relationship line indicates the direction filtering works. When you

create a filter on the Account table, it will filter the corresponding rows of the Sales table.

After setting up the relationships between the tables in the model, you are ready to

add any calculations and measures that will aid in the data analysis.

 Adding Calculations and Measures
As you saw in Chapters 5 and 6, one of the most important aspects of creating a solid

data model involves adding calculated columns and measures that aid in the analysis

of the data. For example, you may need to calculate years of service for employees or

concatenate first and last names. Just like Power BI Desktop, Power Pivot in Excel uses

DAX to create calculated columns and measures.

To create a calculated column, select the Data view button in the Home tab. Next,

select the table to add the calculated column to. The table tabs are along the bottom on

the left (see Figure 10-20).

Figure 10-20. Selecting tables in the Data view

Chapter 10 IntroduCIng power pIvot In exCel

264

Scroll to the last column in the table and you should see the Add Column column.

Select the column and in the formula bar enter the DAX formula for the column and

select the check mark to complete entering the formula (see Figure 10-21). One slight

difference between Power Pivot in Excel and the Power BI Desktop is that you don’t

include the name of the column in the formula bar; instead you have to rename the

column in the table. Remember to start your DAX formula with an = sign.

To create a measure, click a cell in the calculation area under the table where you

want the measure to appear. In the formula bar, create the measure using DAX (see

Figure 10-22). Notice you need to include the name in the formula bar and the := symbol

to separate the name from the DAX formula.

Figure 10-21. Entering the DAX formula for a calculated column

Chapter 10 IntroduCIng power pIvot In exCel

265

ProductSalesRank:=RANKX(All(Product[ProductCategory]),[TotalSales])

Remember, the difference between a calculated column and a measure is that

calculated columns are precalculated and stored in the model. Measures are calculated

when filters are applied to them and are recalculated every time different filters are

applied. So, the more calculated columns you have, the greater the size of your Power BI

Excel file, and the more measures you have, the greater the memory needed to update the

data visuals when different filters are applied. Recall, however, that the Power Pivot model

is based on an in-memory analytics engine and columnar storage (discussed in Chapter 1).

It is designed to load all the data into memory and make calculations on the fly. As such,

you are better off limiting the number of calculated columns in favor of measures.

Context plays an important role when creating measures in the Power Pivot model.

Unlike static reports, Excel visuals are designed for dynamic analysis. When the user

interacts with the visual, the context changes, and the values are recalculated. Knowing

how the context changes and how it affects the results is essential to being able to build

and troubleshoot DAX formulas.

Figure 10-22. Creating a measure

Chapter 10 IntroduCIng power pIvot In exCel

266

As discussed in Chapter 6, there are three types of context you need to consider: row,

query, and filter. The row context comes into play when you are creating a calculated

column. It includes the values from all the other columns of the current row as well

as the values of any table related to the row. Query context is the filtering applied to

a measure in a visual. When you drop a measure into a visual, the DAX query engine

examines any filters applied and returns the value associated with the context. Filter

context is added to the measure using filter constraints as part of the formula. The filter

context is applied in addition to the row and query contexts. You can alter the context by

adding to it, replacing it, or selectively changing it using filter expressions. For example,

you could use the following formula to calculate sales of all products:

All Sales := CALCULATE(Sum(Sales[SalesAmount]),ALL('Product'))

The filter context would clear any product filter implemented by the query context.

You could then use this measure to create a more complex measure, like percentage of

all product sales:

Sales Ratio := Divide([Sales],[All Sales],0)

A common type of data analysis involves comparing measures over time, and that

involves importing or creating a date table, as you will see next.

 Incorporating Time-Based Analysis
As discussed in Chapter 7, one of the most common types of data analysis is comparing

values over time. For example, you may want to look at sales this quarter compared to

sales last quarter or month-to-date (MTD) help desk tickets compared to last month.

DAX contains many functions that help you create the various datetime-based analysis

you may need. For example, you can use the following expressions to calculate the sum

of the sales and the sales year-to-date (YTD) values:

Total Sales := SUM([SalesAmount])

YTD Sales := TOTALYTD([Total Sales],'Date'[Datekey])

To use the built-in time intelligence functions in DAX, you need to have a date table

in your model for the functions to reference. The only requirement for the table is that

it needs a distinct row for each day in the date range you are interested in looking at.

Each of these rows needs to contain the full date of the day. The date table can and often

Chapter 10 IntroduCIng power pIvot In exCel

267

does have more columns, but it doesn’t have to. You can either import a date table from

the source if one is available, create one in Power Query, or use a template provided by

Power Pivot. To use the template, on the Design tab, select the Date Table drop-down

and click the New button. This creates a Calendar table with a date range spanning the

minimum date in your model to the maximum date (see Figure 10-23).

After creating the calendar table, you can use DAX to create additional calculated

columns in the table if you need them. You can also update the date range by selecting

Update Range under the Date Table drop-down (see Figure 10-24).

Figure 10-23. Creating a calendar table

Figure 10-24. Updating the date range

Chapter 10 IntroduCIng power pIvot In exCel

268

The final step is to create a relationship between the date table and the table that

contains the values you want to analyze.

Now that you are familiar with using Power Query and the Power Pivot Model

Designer in Excel, it’s time to get your hands dirty and complete the following hands-on

lab. This lab will help you become familiar with working with the Power Pivot in Excel.

HANDS-ON LAB: CREATING THE DATA MODEL IN POWER PIVOT

In the following lab, you will

• Import data

• Clean and shape the data

• Create table relationships

• add calculated columns and measures

 1. If not already installed, download and install excel 2016 or excel 365.

 2. open excel and create a blank spreadsheet.

 3. on the data tab, click the get data drop-down and choose the From text/CSv

option. navigate to the SF311Calls.csv in the labStarterFiles\Chapter10lab1

folder. open the file and click transform data to open it up in the Query editor.

You should see the Query editor window with San Francisco call center data, as

shown in Figure 10-25.

Chapter 10 IntroduCIng power pIvot In exCel

269

 4. In the applied Steps list, if the Query editor didn’t automatically add the

transform to set the first row as headers, add it now.

 5. Check the types of each column to see whether the Query editor updated the

opened, Closed, and updated columns to a datetime data type. the rest of the

columns should be the text data type.

 6. Filter the data so that it doesn’t include data from the test Queue, zzrpd,

and zztaxi Commission agencies (see Figure 10-26). If you don’t see those

agencies, you may need to click “load more” at the bottom of the filter list.

Figure 10-25. The Query Editor window with call center data

Chapter 10 IntroduCIng power pIvot In exCel

270

Figure 10-26. Filtering out agencies

Chapter 10 IntroduCIng power pIvot In exCel

271

 7. Select the opened column and filter the rows so that opened is after

12/31/2014.

 8. Select the opened column again, and on the add Column tab, select the time

drop-down. Select hour and then Start of hour. rename the new column to

hour opened.

 9. Change the data types of the opened and Closed columns to date (no time) and

the hour opened to the time data type.

 10. In the home tab, select the new Source drop-down and choose the CSv option.

navigate to the file Categories.csv in the labStarterFiles\Chapter10lab1 folder.

open the file and click Import and then oK to open it in the Query editor.

 11. under the home tab, select use First row as headers.

 12. Select the SF311Calls query and merge it with the Categories query using

the Category column (see Figure 10-27).

Chapter 10 IntroduCIng power pIvot In exCel

272

Figure 10-27. Merging queries

 13. expand the resulting column and uncheck the Category field, leaving only the

type field selected (see Figure 10-28).

Chapter 10 IntroduCIng power pIvot In exCel

273

 15. In the Import data pop-up widow, select only Create Connection option and

check the add this data to the data Model (see Figure 10-30). Click oK.

 14. on the home tab, select the Close & load drop-down and the Close & load

to… option (see Figure 10-29).

Figure 10-29. Selecting the Load To option

Figure 10-28. Expanding the new column

Chapter 10 IntroduCIng power pIvot In exCel

274

 16. to open the power pivot model, select the Mange data Model button on the

power pivot tab (see Figure 10-31).

Figure 10-30. Loading data to the model

Figure 10-31. Opening the Power Pivot model

 17. Select the SF311Calls table, select the hour open column, and on the home tab

change the format to show the hour (see Figure 10-32).

Chapter 10 IntroduCIng power pIvot In exCel

275

 18. to create a calendar table, on the design tab, under the date table drop-down,

click the new table button.

 19. once the calendar table is created, select the date table drop-down again and

update the date range from 1/1/2014 to 12/31/2016.

 20. In the data view, select the Calendar table. Change the date column’s data type

to date and format it to show MM/dd/yyyy.

 21. Sort the Month column by the Month no column.

 22. Switch to the diagram view and create a relationship between the SF311Calls

table and the Calendar table using the date opened and date columns (see

Figure 10-33).

Figure 10-32. Changing the time format

Chapter 10 IntroduCIng power pIvot In exCel

276

 23. In the data view, select the SF311Calls table. add a days open column using

the following formula:

= DATEDIFF([Opened],if(ISBLANK([Closed]),max

('Calendar'[Date]),[Closed]),DAY)

 24. add the following measures to the SF311Calls table:

Number of Cases := COUNTROWS('SF311Calls')

Previous Month Number of Cases := Calculate([Number of Cases],

PARALLELPERIOD('Calendar'[Date],-1,MONTH))

 25. Close the power pivot editor and save the excel file as Chapter10lab1.xlsx.

 Summary
This chapter introduced you to Power Pivot in Excel. Most of the concepts were a review

of topics covered in previous chapters. The purpose of this chapter was for you to gain

familiarity with using Power Pivot in Excel and discovering how similar it is to working

in Power BI Desktop. Once you have the data model created in Power Pivot, you need to

create an interface for users to interact with the data model and perform data analysis

using the model. This is where pivot tables and pivot charts in Excel come into play and

are the topics covered in Chapter 11.

Figure 10-33. Creating a relationship between tables

Chapter 10 IntroduCIng power pIvot In exCel

277
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_11

CHAPTER 11

Data Analysis with
Pivot Tables and Charts
Once you have the data model created in Power Pivot, you need to create an interface

for users to interact with the data model and perform data analysis using the model.

Excel is a feature-rich environment for creating dashboards using pivot tables and pivot

charts. Furthermore, it is very easy to share Excel files with colleagues or host the Excel

workbook on SharePoint for increased performance and security. This chapter covers

the basics of building an interface for analyzing the data contained in a Power Pivot

model using pivot tables and pivot charts in Excel.

After completing this chapter, you will be able to

• Use pivot tables to explore the data

• Filter data using slicers

• Add visualizations to a pivot table

• Use pivot charts to explore trends

• Use multiple charts and tables linked together

• Use cube functions to query the data model

Note This chapter contains references to color figures. If you are
reading this book in print, or in a black-and-white e-book edition, you can find
copies of color figures in the Source Code/Downloads package for the book at
 https://github.com/Apress/beginningpower-bi-3ed.

https://github.com/Apress/beginningpower-bi-3ed

278

 Pivot Table Fundamentals
One of the most widely used tools for analyzing data is the pivot table. The pivot table

allows you to easily detect patterns and relationships from the data. For example, you

can determine what products sell better during certain times during the year. Or you can

see how marketing campaigns affect the sales of various products. Figure 11-1 shows the

various areas of a pivot table.

Figure 11-1. The parts of a pivot table

The row and column fields contain the attributes that you are interested in using to

summarize the data. For example, the pivot table in Figure 11-1 is aggregating the values

by product categories and years. The filter is used to filter the values in the pivot table

by some attribute. The filter in Figure 11-1 is limiting the results to the first quarter of

each year. The slicer works the same as the filter in this case, limiting the values to small

resellers. Slicers have the added advantage of filtering multiple pivot tables and pivot

charts.

To construct the pivot table, on the Insert tab, select the Pivot Table button. In the

Create PivotTable window, select the option to use the workbook’s data model (see

Figure 11-2).

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

279

You should see a field list and a pivot table on a new Excel sheet. Drag and drop the

fields from the field list to the drop areas below the field list, as shown in Figure 11-3. If

you just click the check box to select the fields, it will place text fields in the rows and any

numeric values in the Values area. This can become quite annoying because it will place

a field like Years in the Values area and treat it as a set of values to be summed.

Figure 11-2. Inserting a pivot table

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

280

To add slicers to filter the pivot table, you need to go to the Insert tab in Excel and

select the Slicer button. The next section looks at adding slicers and controlling multiple

pivot tables with the same slicer.

 Slicing the Data
To add a slicer to filter a pivot table, click the pivot table, and on the Insert tab, select

the Slicer button. You should see a pick list containing the fields in the Power Pivot data

model (see Figure 11-4).

Figure 11-3. Adding fields to the pivot table

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

281

If you had the pivot table selected when you inserted the slicer, it is automatically

wired up to the pivot table. You can verify this by clicking the slicer and selecting the

Slicer Tools Options tab (see Figure 11-5). You can use this tab to format the slicer and

choose the Report Connections for the slicer.

Figure 11-4. Selecting the slicer field

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

282

Figure 11-6 shows the Report Connections pick list for the slicer. Notice that the pivot

table doesn’t have to be on the same sheet as the slicer. The names of the pivot tables

are the generic names given to them by Excel when they were created. As you add more

pivot tables, it is a good idea to give them more meaningful names. If you click the pivot

table and go to the PivotTable Analyze tab, you will see a text box under the PivotTable

drop-down where you can change the name of the pivot table.

Figure 11-5. Setting the slicer connections

Figure 11-6. Selecting connections for the slicer

If you select the Slicer Settings button under the Slicer Options tab, you launch the

Slicer Settings window (see Figure 11-7) where you can change the name, caption, and

sort order of the slicer. You can also choose how to show items with no data.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

283

There are times when you need cascading filters, where one filter limits what can be

chosen in the next filter. This is easy with slicers based on fields that are related in the

model. When you select the related fields, the slicers are linked automatically for you.

For example, Figure 11-8 shows a product category and product subcategory filter. If you

select a product category, the corresponding product subcategories are highlighted.

Figure 11-7. Changing the slicer settings

Figure 11-8. Creating cascading filters using slicers

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

284

 Adding Visualizations to a Pivot Table
To help identify trends and outliers and provide insight into the data, you can add

many types of visualizations to a pivot table. These include conditional formatting, data

bars, and trend lines. Figure 11-9 shows a pivot table with data bars and conditional

formatting.

To create the visual formatting, select the data you want to format in the pivot table,

and in the Home tab, click the Conditional Formatting drop-down (see Figure 11-10). As

you can see, you have a lot of options for creating conditional formatting. (In Figure 11-9,

there is a Highlight Cells Rule that displays negative numbers in red.)

Figure 11-9. Using conditional formatting and data bars

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

285

Once you establish a rule, you can edit it by clicking the Manage Rules option and

selecting the rule you want to edit. Figure 11-11 shows the various options you can set for

a data bar formatting rule.

Figure 11-10. Setting up conditional formatting

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

286

You can produce some interesting effects with the formatting rules. For example, the

pivot table in Figure 11-12 shows a heat map used to quickly determine which months

have good sales and which are bad.

Figure 11-11. Editing a data bar rule

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

287

Another popular feature associated with pivot tables is the spark lines. Spark lines

are mini graphs that show the trend of a series of data. Figure 11-13 shows spark lines

that display the sales trend across the four quarters of the year.

Figure 11-12. Creating a heat map with conditional formatting

Figure 11-13. Using spark lines to show trends

To create a spark line, highlight the values in the pivot table that contain the data and

select the Sparklines button on the Insert tab. You then select the location of the spark line

(see Figure 11-14). You can choose between a line, a column, and a win/loss spark line.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

288

Although adding visualizations to pivot tables can enhance your ability to analyze

the data, many times the best way to spot trends and compare and contrast the data is

through the use of charts and graphs. In the next section, you will see how charts and

graphs are useful data analysis tools and how to add them to your analysis dashboards.

 Working with Pivot Charts
Along with pivot tables, Excel has a robust set of charts and graphs available for you to

use to analyze your data. Adding a pivot chart is very similar to adding a pivot table. On

Excel’s Insert tab, click the PivotChart drop-down. You have the option of selecting a

single PivotChart or a PivotChart and PivotTable that are tied together (see Figure 11-15).

Figure 11-14. Setting up a spark line

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

289

After selecting the pivot chart, you are presented with a window to select a data

source and choose where you want to put the pivot chart (see Figure 11-16).

Figure 11-15. Adding a pivot chart

Figure 11-16. Selecting a data source

Once you select the data source, you are presented with a blank chart and the field

selection box where you can drag and drop fields for the chart values and axis (see

Figure 11-17).

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

290

By default, the chart is a column chart, but you can choose from many different types

of charts. If you click the chart and select the Design tab, you can select the Change Chart

Type button and choose from a variety of types (see Figure 11-18).

Figure 11-17. Creating a chart

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

291

Along with changing the chart type, the PivotChart Tools tabs offer you a vast

assortment of design and formatting options you can use to customize the look and feel

of your charts and graphs. It is worth your time to play around with the tools and create

various graphs to gain a better idea of the various options available.

 Using Multiple Charts and Tables
When creating pivot tables and charts to display and make sense of the data, you often

want to create a dashboard that easily allows you to determine performance. You may be

interested in sales performance, network performance, or assembly-line performance.

Dashboards combine visual representations, such as key performance indicators (KPIs),

 graphs, and charts, into one holistic view of the process. Although they are not

Figure 11-18. Selecting a chart type

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

292

technically considered dashboard tools, you can create some very compelling data

displays using Excel with Power Pivot tables and charts that can then be displayed and

shared in SharePoint or the Power BI portal.

When adding multiple charts and tables to a dashboard, you may want to link them

together so they represent the same data in different ways. You also will probably want

to control them with the same slicers so they stay in sync. The easiest way to do this is to

add them using the Insert tab and select PivotChart & PivotTable (see Figure 11-19).

Figure 11-19. Adding a pivot chart and a related pivot table

Adding the pivot chart and pivot table in this way creates a link between them, so

that when you add a field to one, it adds the same field to the other. Also, when you add

a slicer to the page, it automatically hooks up the slicer to both the pivot table and the

pivot chart. Figure 11-20 shows a simple dashboard consisting of a linked pivot table,

pivot chart, and slicer.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

293

If you need to connect multiple charts together, open the Model Designer by

selecting the Manage button on the PowerPivot tab. Select the PivotTable drop-down

on the Home tab (see Figure 11-21). This also allows you to insert a flattened pivot table,

which is useful for printing.

Figure 11-20. Creating a simple dashboard in Excel

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

294

 Using Cube Functions
Using the built-in PivotChart and PivotTable layouts in Excel allows you to create

compelling dashboards and provide great interfaces for browsing the data. There are

times, though, when you may find yourself frustrated with some of the limitations inherent

with these structures. For example, you can’t insert your own columns inside the pivot

table to create a custom calculation. You may also want to display the data in a non-tabular

format for a customized report. This is where the Excel cube functions are useful.

The Excel cube functions allow you to connect directly to the Power Pivot data

model without needing to use a pivot table. The cube functions are Excel functions (as

opposed to DAX functions) and can be found on the Excel Formulas tab under the More

Functions drop-down (see Figure 11-22).

Figure 11-21. Connecting multiple pivot charts

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

295

The easiest way to see how these functions are used is to create a pivot table. On

the PivotTable Analyze tab, click the OLAP Tools drop-down and select the Convert to

Formulas option (see Figure 11-23).

Figure 11-22. Using cube functions to connect to the model

Figure 11-23. Converting from a pivot table to cube functions

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

296

Figure 11-24 shows the table after the conversion to cube functions. It uses the

CUBEMEMBER function to return a member or tuple (ordered list) from the cube and the

CUBEVALUE function to return an aggregated value from the cube.

The following formula is used to return the column label for the highlighted cell

C4 in the preceding table:

=CUBEMEMBER("ThisWorkbookDataModel","[Product].[Category].&[Accessories]")

The first parameter is the name of the connection to the data model, and the second

parameter is the member expression.

The value in cell D4 is returned using the following formula:

=CUBEVALUE("ThisWorkbookDataModel",C2,$C4,D$3)

This formula uses cell references, but you can replace these with the cube functions

contained in these cells:

=CUBEVALUE

(

 "ThisWorkbookDataModel",

 CUBEMEMBER("ThisWorkbookDataModel","[Measures].[Sales Amount]"),

 CUBEMEMBER("ThisWorkbookDataModel",

 "[Product].[Category].&[Accessories]"),

 CUBEMEMBER("ThisWorkbookDataModel",

 "[Geography].[CountryRegionCode].&[AU]")

)

Figure 11-24. Using cube functions to retrieve values

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

297

Note that one of the parameters is the CUBEMEMBER function returning the aggregation

you want the value of; the other parameters use the CUBEMEMBER to define the portion of

the cube used in the aggregation.

You can now rearrange the values and labels to achieve the layout and formatting

that you need (see Figure 11-25).

Figure 11-25. Rearranging the data

HANDS-ON LAB: CREATING THE BI INTERFACE IN EXCEL

In the following lab, you will

• add conditional formatting to a pivot table

• Create a chart to help analyze data

• link together pivot tables and pivot charts

• Use cube functions to display model data

 1. In the labStarterFiles\Chapter11lab1 folder, open the Chapter11lab1.xlsx file.

This file contains inventory and sales data from the test adventureworksDw

database.

 2. In excel Sheet1, insert a power pivot table using the pivotTable button on the

Insert tab. Make sure the Use this workbook’s Data Model is selected. If you

don’t see the pivotTable button, you may need to click the Table button first.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

298

 3. add TotalQuantity, TotalSales, and TotalMargin from the resellerSales table to

the values drop area in the Field list window. add the Calendar hierarchy to the

rows drop area.

 4. note that some of the margins are negative. To bring attention to the negative

values, you are going to format them in red.

 5. Select a TotalMargin cell in the pivot table. on the home tab, click the

Conditional Formatting drop-down. Select the highlight Cells, less Than option.

Format the cells that are less than 0 with red text (see Figure 11-26).

Figure 11-26. Setting conditional formatting

 6. when finished, you should see an icon next to the selected cell. Click it and

select the all Cells Showing TotalMargin values option.

 7. Select one of the TotalSales cells. This time select the Data bars under the

Conditional Formatting drop-down. Select one of the gradient styles. after

selecting the data bar, you should see a small icon next to the values. Click it

and select the all Cells Showing TotalSales values.

 8. your pivot table should look like Figure 11-27. expand the years and note that

the formatting shows up for the quarters, months, and years.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

299

 9. open Sheet2 and on the Insert tab, and select the pivotChart drop-down. From

the drop-down, choose the pivot chart. Insert the chart on the current sheet

using the Use this workbook’s Data Model option.

 10. In the Field list window, add the TotalSales from the resellerSales table to the

values drop area and add the Countryregionname from the Geography table

to the axis Fields drop area. you should see a column chart showing sales by

country (see Figure 11-28).

Figure 11-27. Adding conditional formatting to the pivot table

Figure 11-28. Adding a column chart

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

300

 11. Select the column chart. In the Design tab, you can change the chart colors,

layout, and chart type.

 12. The Format tab lets you format the shapes and text in the chart. The analyze

tab lets you show/hide the field buttons.

 13. rename the title of the chart to Sales By Country. hide the field buttons and

delete the legend.

 14. right-click the vertical axis and select Format axis. Under axis options, change

the Display Units to Millions. Under the number node, change the Category to

Currency with zero decimal places. your chart should look like Figure 11-29.

Figure 11-29. Formatting the column chart

 15. Sometimes you want to see a data chart and a data table together. To do this,

go to the power pivot Model Designer by clicking on the Manage button on the

powerpivot tab. after it loads, on the home tab, select the pivotTable drop-

down. From the drop-down, choose the Chart and Table (horizontal). Insert the

chart and table on a new sheet.

 16. Change the chart type to a pie chart. on the Field list window for the chart, add

the TotalSales field to the values drop area and the CountryregionCode to the

axis Fields drop area.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

301

 17. Change the title of the chart to Sales by Country and remove the field button.

 18. Change the Chart layout on the Design tab to show values as % of total (see

Figure 11-30).

Figure 11-30. Creating the sales pie chart

 19. Click the pivot table to bring up its Field list window. add the TotalSales field

from the resellerSales table to the values drop area. add the Subcategory field

from the product table to the rows drop area.

 20. with the pie chart selected, insert a slicer for the product category and one for

the year (see Figure 11-31). verify that the slicers filter the pie chart but not the

pivot table.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

302

 21. Select the year slicer and on the Slicer tab, click the report Connections button.

add the pivot table located on the same sheet as the pie chart. repeat this for

the category slicer.

 22. verify that the slicers filter both the chart and the pivot table. your dashboard

should look like Figure 11-32.

Figure 11-31. Inserting the slicers

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

303

 23. add a new sheet to the workbook. you are going to use cube functions to

calculate the top product and top reseller in total sales. The result should look

like Figure 11-33.

Figure 11-33. Using cube functions

Figure 11-32. Creating a dashboard

 24. add the following code in b1 to select the TotalSales measure:

=CUBEMEMBER("ThisWorkbookDataModel","[Measures].[TotalSales]")

 25. In b2, use the following function to get the set of resellers ordered by TotalSales

descending—you will use this set to select the top reseller:

=CUBESET("ThisWorkbookDataModel",

 "[Reseller].[ResellerName].children","Top Reseller",2,B1)

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

304

 26. In b3, use this function to get the set of products ordered by TotalSales descending:

=CUBESET("ThisWorkbookDataModel",

 "[Product].[Product].children","Top Products",2,B1)

 27. In C2, use the CUBERANKEDMEMBER function to get the top reseller from the set

returned by the function in b2:

=CUBERANKEDMEMBER("ThisWorkbookDataModel",B2,1)

 28. In C3, use the CUBERANKEDMEMBER function to get the top product from the set

returned by the function in b3:

=CUBERANKEDMEMBER("ThisWorkbookDataModel",B3,1)

 29. In D2, use the CUBEVALUE function to get the total sales of the top reseller

found in C2. notice you have to concatenate the name of the reseller found in

C2 to the [Reseller].[ResellerName] attribute in the power pivot model:

=CUBEVALUE("ThisWorkbookDataModel",

 "[Reseller].[ResellerName].&["& C2 &"]","[Measures].[TotalSales]")

 30. Using a similar CUBEVALUE function, you can get the total sales value for the

top product in cell D3:

=CUBEVALUE("ThisWorkbookDataModel",

 "[Product].[Product].&[" & C3 &"]","[Measures].[TotalSales]")

 31. you can verify the results by building a pivot table.

 Summary
As you saw in this chapter, Excel is a feature-rich environment for creating dashboards using

pivot tables and pivot charts. At this point, you should feel comfortable creating pivot tables

and pivot charts using your workbook model as a data source. You also used Excel cube

functions to query the model directly without needing to use a pivot table. Although this

chapter covered the basics to get you started, you have a lot more to learn about Excel and

how it can help you analyze your data. I encourage you to dig deeper into these features.

In the next chapter, you will look at several realistic case studies to solidify the

concepts of the previous chapters. By working through these case studies, you will be

able to gauge which areas you have mastered and which you need to study further.

ChapTer 11 DaTa analySIS wITh pIvoT TableS anD CharTS

305
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_12

CHAPTER 12

Creating a Complete
Solution
So far in this book, you’ve gained experience working with each of the pieces of

Microsoft’s self-service BI toolset. You’ve used Power Query, Power BI Desktop, Power

Pivot, and Excel. This chapter provides you with several use cases to solidify the

concepts of the previous chapters. By working through these use cases, you will gauge

which areas you have mastered and which you need to spend more time studying.

Because this is sort of like your final exam, I have deliberately not included step-by-step

instructions as I did for earlier exercises. Instead, I have given you general directions

that should be sufficient to get you started. If you get stuck, refer back to the previous

chapters to remind yourself of how to accomplish the task.

This chapter contains the following use cases:

• Sales quota analysis

• Reseller sales analysis

• Sensor analysis

 Use Case 1: Sales Quota Analysis
For this scenario, you work for a bike equipment company and have been asked to

analyze the sales data. Using Power BI Desktop, you need to create a dashboard that

allows the sales manager to track the performance of the sales team. You will compare

actual sales to the sales quotas for the sales team.

306

 Load the Data
Create a new Power BI Desktop file named SalesRepAnalysis.pbix. In the Chapter12Labs

folder is a folder named UseCase1; this folder contains a SalesRepAnalysis.accdb Access

database with sales data extracted from the sales data warehouse. Using this as a data

source, select the Employee, SalesTerritory, and ResellerSales table. Then select the

Transform Data button to launch Power Query (see Figure 12-1).

Figure 12-1. Selecting the tables

Using Power Query, select the columns listed in Table 12-1.

Chapter 12 Creating a Complete Solution

307

Filter the Employee table to only include salespeople. Add a Name Column

that combines the FirstName and Last Name columns. In the Sales table, use the

OrderDateKey to create an OrderDate column. Change OrderDateKey’s data type from

whole number to text. Because the OrderDateKey is in the format YYYYMMDD, you

can now use the Date.FromText() function to create an OrderDate column. Make

sure the new column is a date format type. Once you have the OrderDate column, you

can use this to create a Year and a Quarter column. Then group the SalesAmount by

EmployeeKey, SalesTerritoryKey, OrderYear, and Quarter. Add a leading Q to the quarter

numbers. Create a TimePeriod column that concatenates the Year and Quarter columns.

After creating the TimePeriod column, you can delete the Year and Quarter columns.

The result should look like Figure 12-2.

Table 12-1. Columns to Import

Source Table Query Name Fields

employee rep employeeKey, employeenationaliD, Firstname, lastname,

middlename, title

Salesterritory territory SalesterritoryKey, Salesterritoryregion,

SalesterritoryCountry, Salesterritorygroup

resellerSales Sales orderDateKey, employeeKey, SalesterritoryKey,

Salesamount

Chapter 12 Creating a Complete Solution

308

The sales quotas are kept in an Excel workbook called SalesQuotas.xlsx in the

UseCase1 folder. Import the data using the Excel source and select the sheets for each

year. Once the data is imported into Power Query using the Transform Data button,

you should see a query for each year. You need to add the year column to each query.

Now you can combine the queries by appending them into a new query called Quotas.

Rearrange the column order to SalesPerson, Year, Q1, Q2, Q3, and Q4. Select the

SalesPerson and Year columns. Unpivot the other columns. Rename the Value column

to Quota. Add a TimePeriod column that concatenates the year and quarter. After

adding the TimePeriod, remove the Year and Quarter columns. The result should look

like Figure 12-3.

Figure 12-2. The final Sales query data

Chapter 12 Creating a Complete Solution

309

Right-click each of the year queries and uncheck the Enable load option (see

Figure 12-4).

Figure 12-3. The final Quotas query data

Chapter 12 Creating a Complete Solution

310

To create the appropriate relationships between the tables, you need to create a

Period table that contains the calendar year and quarter. To get this table, right-click the

Quotas query and select Duplicate. Rename the query to Period. Delete the step that

removed the Year and Quarter columns. Remove the SalesPerson and Quota columns.

With the TimePeriod column selected, click the Remove Rows drop-down button on the

Home tab and choose Remove Duplicates. Finally, reorder the columns and order the

rows by TimePeriod. The result should look like Figure 12-5.

Figure 12-4. Disabling the load option

Chapter 12 Creating a Complete Solution

311

Figure 12-5. The results of the Period query

Click Close & Apply to load the data into the model. You are now ready to create the

data model.

 Create the Model
After importing the tables, rename the table columns and show or hide the columns

from client tools according to the information listed in Table 12-2.

Table 12-2. Table and Column Property Settings

Table Column New Name Hide in Report view

rep employeeKey — X

employeenationaliD employee iD

Firstname First name

lastname last name

middlename middle name

name Sales person

(continued)

Chapter 12 Creating a Complete Solution

312

After renaming and hiding the key fields, format the Sales Amount and quota

columns as currency.

The next step is to verify the table relationships in the model. Figure 12-6 shows what

the model should look like.

Table Column New Name Hide in Report view

territory SalesterritoryKey — X

Salesterritoryregion region

SalesterritoryCountry Country

Salesterritorygroup group

Quota

Sales

timeperiod —

Salesperson Salesperson

Quota —

employeeKey — X

SalesterritoryKey — X

timeperiod — X

Salesamount Sales amount

Table 12-2. (continued)

Chapter 12 Creating a Complete Solution

313

Figure 12-6. The Sales Rep Analysis model with relationships defined

You are now ready to add some measures to the model.

 Create Measures
Add the following measure to the Sales table:

Total Sales = Sum(Sales[Sales Amount])

Add the following measures to the Quota table:

Total Quota = Sum(Quota[Quota])

Variance = Sales[Total Sales] -Quota[Total Quota]

Percent Variance = DIVIDE(Quota[Variance],Quota[Total Quota],BLANK())

Make sure you format the measures appropriately.

Chapter 12 Creating a Complete Solution

314

 Create the Report
Create a report for analyzing sales person performance on Page 1 of the report designer

by adding the following visuals:

• Slicer using the year from the Period table

• Stacked column chart that shows Total Sales by Country and Quarter

• Multi-row card showing Total Sales and Total Quota

• Multi-row card showing Variance and Percent Variance

• Clustered column chart showing Total Sales and Total Sales by

Salesperson

• Text box for the title

Your final report page should look like Figure 12-7.

Figure 12-7. The final Salesperson Performance report

Chapter 12 Creating a Complete Solution

315

Figure 12-8. The final report, Page 2

Add another page to the report and add the following visuals to the page:

• Slicer with the Year field from the Period table

• Slicer with the Salesperson field from the Rep table

• Two tables with the Salesperson, Total Sales, Total Quota, and

Percent Variance fields

• A line chart showing Total Sales and Total Quota by TimePeriod

Filter the tables so that one shows the top five Salesperson by Percent Variance

and the other shows the bottom five Salespersons by Percent Variance. Edit the

visual interactions so that the Year slicer affects the tables but not the line chart. The

Salesperson slicer should affect the line chart but not the tables. The final report page

should look like Figure 12-8.

After completing and experimenting with the report, close and save the desktop file.

Chapter 12 Creating a Complete Solution

316

 Use Case 2: Reseller Sales Analysis
In this scenario, you work for a bike equipment company and have been asked to

analyze the sales data. You need to compare monthly store sales. An added constraint is

that you only want to compare resellers who have been open for at least a year when you

make the comparison.

 Load the Data
Create a new Excel workbook named StoreSalesAnalysis.xlsx. In the Chapter12Labs

folder, find the UseCase2 folder, which contains a StoreSales.accdb Access database. This

database houses the sales data you need to analyze. On the Data tab, select the Get Data

drop-down to connect to the Access database. In the navigator pane, select the source

tables listed in Table 12-3 (see Figure 12-9). After selecting the tables, click the Transform

Data button to launch Power Query.

Chapter 12 Creating a Complete Solution

317

Figure 12-9. Selecting the source tables

Table 12-3. Store Sales Tables and Columns to Import

Source Table Friendly Name Columns

dbo_DimDate Date FullDate, monthname, monthnumberofYear,

CalendarQuarter, CalendarYear

dbo_Dimgeography location geographyKey, City, StateprovinceCode,

Stateprovincename, CountryregionCode,

englishCountryregionname, postalCode

(continued)

Using Power Query, rename the tables and select columns listed in Table 12-3.

Chapter 12 Creating a Complete Solution

318

Table 12-3. (continued)

Table 12-4. Friendly Column Names

Table Column New Name

Date FullDate Full Date

monthname month

monthnumberofYear month number

CalendarQuarter Calendar Quarter

CalendarYear Calendar Year

(continued)

Source Table Friendly Name Columns

dbo_Dimproduct product productKey, productSubcategoryKey,

englishproductname, StandardCost, listprice,

Dealerprice

dbo_DimproductCategory Category productCategoryKey,

englishproductCategoryname

dbo_DimproductSubcategory Subcategory productSubcategoryKey,

englishproductSubcategoryname,

productCategoryKey

dbo_Dimreseller reseller resellerKey, geographyKey, Businesstype,

resellername, Yearopened

dbo_FactresellerSales Sales productKey, resellerKey, Salesordernumber,

Salesorderlinenumber, orderQuantity,

unitprice, extendedamount, totalproductCost,

Salesamount, orderDate

Rename the columns according to the information listed in Table 12-4.

Chapter 12 Creating a Complete Solution

319

Table Column New Name

product productKey —

productSubcategoryKey —

englishproductname product

StandardCost Standard Cost

listprice list price

Dealerprice Dealer price

reseller resellerKey —

geographyKey —

Businesstype Business type

resellername reseller name

Yearopened Year opened

location geographyKey —

StateprovinceCode State province Code

Stateprovincename State province

CountryregionCode Country Code

englishCountryregionname Country

postalCode postal Code

Sales productKey —

resellerKey —

Salesordernumber order number

Salesorderlinenumber order line number

orderQuantity Quantity

unitprice unit price

extendedamount extended amount

totalproductCost product Cost

Salesamount Sales amount

orderDate —

Table 12-4. (continued)

Chapter 12 Creating a Complete Solution

320

After renaming the tables, select Close & Load To... on the Home tab in Power Query.

In the Import Data window, select Only Create Connection and check the Add this data

to the Data Model checkbox (see Figure 12-10).

Figure 12-10. Importing the data

 Create the Model
After importing the tables, go to the PowerPivot ribbon and select the Manage button

to open the data model. In the model designer, create the table relationships using the

appropriate keys. Your model should now look like Figure 12-11.

Chapter 12 Creating a Complete Solution

321

Figure 12-11. Store sales model

Right-click the Date table in the diagram and select create hierarchy. Create a

calendar hierarchy of Year–Quarter–Month. Mark the table as the Date table with the Full

Date column as the key.

Return to the Data view and sort the Month column by the Month Number column.

Format the Full Date column to only show the date and not the time. Hide the key

columns in the tables from the client tools.

 Create Calculated Columns
Using the DAX RELATED function, create a calculated column in the Product table for

Product Subcategory and Product Category. If the ProductSubcategoryKey is blank, fill in

the Category and Subcategory columns with "Misc".

[Category]

=IF(ISBLANK([ProductSubcategoryKey]),"Misc",

 RELATED(Category[EnglishProductCategoryName]))

[Subcategory]

=IF(ISBLANK([ProductSubcategoryKey]),"Misc",

 RELATED(Subcategory[EnglishProductSubcategoryName]))

Chapter 12 Creating a Complete Solution

322

Hide the Category and Subcategory tables from any client tools. Finally, create a

hierarchy with the Product Category and Product Subcategory columns named Prd Cat.

 Create Measures
Add the following measures to the Sales table:

Month Sales:=TOTALMTD(SUM([Sales Amount]),'Date'[Full Date])

Prev Month Sales:=CALCULATE(Sum([Sales Amount]),PREVIOUSMONTH('Date'[Full Date]))

Monthly Sales Growth:=[Month Sales] - [Prev Month Sales]

Monthly Sales Growth %:=DIVIDE([Monthly Sales Growth],[Prev Month Sales],0)

Test your measures by creating a pivot table. To create the pivot table, use the Insert

tab and select the PivotTable on the left side of the menu. In the Create PivotTable

window, select Use this workbook’s Data Model (see Figure 12-12).

Select the PivotTable to see the field list (see Figure 12-13). If you don’t see the field

list, select the PivotTable Analyze tab and click the show field list option on the right side

of the menu.

Figure 12-12. Creating a PivotTable

Chapter 12 Creating a Complete Solution

323

Figure 12-13. Adding fields to the PivotTable

Chapter 12 Creating a Complete Solution

324

Once you format the columns, your resulting pivot table should look similar to

Figure 12-14.

Figure 12-14. Viewing the measures in a pivot table

Now you need to create a measure to determine whether a store was open for at

least a year for the month you are calculating the sales for. In the Reseller table, add the

following measures:

Years Open:=Year(FIRSTDATE('Date'[Full Date])) - Min([Year Opened])

Was Open Prev Year:=If([Years Open]>0,1,0)

Create a pivot table to test your measures, as shown in Figure 12-15. Remember that

the measures only make sense if you filter by year. You can filter by year using a slicer.

You can insert a slicer using the PivotTable Analyze tab.

Chapter 12 Creating a Complete Solution

325

Now you can combine these measures so that you are only including resellers who

have been in business for at least a year at the time of the sales. Create the following

measures in the Sales table:

Month Sales Filtered:=Calculate([Month Sales],FILTER(Reseller,[Was Open

Prev Year]=1))

Prev Month Sales Filtered:=CALCULATE([Prev Month Sales],

 Filter(Reseller,[Was Open Prev Year]=1))

Monthly Sales Growth Filtered:=[Month Sales Filtered]-[Prev Month Sales Filtered]

Monthly Sales Growth Filtered %:=DIVIDE([Monthly Sales Growth Filtered],

 [Prev Month Sales Filtered],0)

Test your new measures by creating a Power Pivot table, as shown in Figure 12-16.

You should see a difference between the filtered and the nonfiltered measures.

Figure 12-15. Testing the measures

Chapter 12 Creating a Complete Solution

326

 Create a Dashboard
To create a dashboard, insert a new Excel sheet. Name the sheet Reseller Sales. From the

Insert tab, insert a PivotChart that shows Sales by Month and Business Type using the

filtered monthly sales. Add a slicer to the report that controls the calendar year displayed

by the chart. Your report should look like Figure 12-17.

Figure 12-16. Testing the filtered measures

Figure 12-17. The Reseller Sales report

Chapter 12 Creating a Complete Solution

327

You now want to make another reseller analysis to find the best monthly sales for

the month, quarter, and year. To do this, you need to add a new measure to the Sales

table. This measure uses the VALUES and the MAXX functions to find the maximum reseller

monthly sales:

Max Reseller Sales:=MAXX(VALUES(Reseller[ResellerKey]),[Month Sales])

Once you have the new measure in the model, add another column chart to the

Excel sheet that shows the maximum reseller sales for each month. Make sure you

update the year slicer so that it filters both charts (see Figure 12-18).

Figure 12-18. Adding the Max Reseller Sales chart

To take this one step further, let’s say you want the name of the reseller who has

the maximum monthly sales for the period. To accomplish this, you can use the TOPN

function to add a measure to the Reseller table to find the top reseller for the month:

TOPN(1,Reseller,ResellerSales[Month Sales],DESC)

Chapter 12 Creating a Complete Solution

328

Because TOPN returns a table of values that could include more than one row for

ties, you need to concatenate the results into a single string value. You can use the

CANCATENATEX function for this. The result is as follows:

Top Monthly Reseller:=CONCATENATEX(TOPN(1,Reseller,Sales[Month

Sales],DESC),Reseller[Reseller Name],", ")

Add a new Excel worksheet named Max Resellers. Add a pivot table that shows the

maximum reseller sales and reseller name for each month. Also include a slicer for the

year, one for the reseller type, and one for the country. Your dashboard should look like

Figure 12-19.

Figure 12-19. The final dashboard in an Excel worksheet

After completing and experimenting with the dashboards, save and close Excel.

Chapter 12 Creating a Complete Solution

329

 Use Case 3: Sensor Analysis
For this scenario, you work for a power company that monitors equipment using

sensors. The sensors monitor various power readings, including power interruptions

and voltage spikes. When the sensor senses a problem, it triggers an alarm signal that

is recorded. You need to create a map that allows analysts to view and compare power

interruptions and voltage spikes over time.

 Load the Data
The data you will need is in several text files. Open the folder called UseCase3 in the

Chapter12Labs folder. This folder has four files that contain the sensor data and the

related data you need to complete the analysis. Create a new Power BI Desktop file

named PowerAnalysis.pbix. Connect to the Alarms.csv file in the UseCase3 folder. You

should have the following columns: PREMISE_NUMBER, METER_NUMBER, OP_

CENTER, Type, and DateKey. Add a second query, AlarmType, which gets the alarm type

data from the AlarmType.txt file.

Reopen the Alarms query and merge it with the AlarmType query using the

appropriate keys (see Figure 12-20).

Chapter 12 Creating a Complete Solution

330

Expand the new column and select the ALARM_DESCRIPTION column. Rename

this column to Alarm Type.

Repeat the previous procedures to replace the DateKey column with the dates in the

Date.csv file. Use the Locations.txt file to add the longitude and latitude values to the

Alarms query based on the OP_CENTER. You can rename the columns so that they use

the same naming convention. Your alarm query data should look like Figure 12-21.

Figure 12-20. Merging the AlarmType query with the Alarms query

Chapter 12 Creating a Complete Solution

331

Figure 12-21. The Alarm query with Latitude and Longitude data added

Figure 12-22. Aggregating and grouping the alarm data

Next, filter the data to limit it to alarm types of power failure and high AC volts.

Now you can aggregate the alarm counts grouping by the Date, Op Center, Alarm Type,

Longitude, and Latitude (see Figure 12-22).

Chapter 12 Creating a Complete Solution

332

After aggregating the data, disable the load for the AlarmType, Date, and Locations

queries (see Figure 12-23). Select Close & Apply to load the data into the model.

On Page 1 of the report, add a map visual. Add the longitude and latitude values to

the map. Add the Alarm Count to the size and the Op Center as the legend. Next, add a

line chart to the report page. Use the Date as the axis, the Op Center as the legend, and

the Alarm Count as the values. The report should look like Figure 12-23.

Figure 12-23. The final report

Notice that clicking a bubble on the map will filter the line chart. After exploring the

alarm data in Power BI Desktop, save and close the file.

 Summary
This chapter provided you with some use cases to help you gauge your mastery of

the topics in the rest of the book. The goal of this book has been to expose you to

the various tools in Microsoft’s self-service BI stack. I hope you have gained enough

confidence and experience with these tools to start using them to analyze and gain

insight into your own data.

Chapter 12 Creating a Complete Solution

333

Now that you have a firm understanding of how to use these tools, you should be

comfortable tackling more complex topics. The next two chapters are optional advanced

chapters that contain topics I think you will find useful. In addition, there are many

good resources available that cover various techniques and patterns that can be used

to analyze your data. Microsoft’s Power BI site (www.microsoft.com/en-us/powerbi/

default.aspx), Bill Jelen’s site (www.mrexcel.com), and Rob Collie’s Power Pivot Pro

site (www.powerpivotpro.com) are excellent resources. For more advanced topics, check

out Chris Webb’s BI Blog at https://blog.crossjoin.co.uk/ and Marco Russo’s and

Alberto Ferrari’s SQLBI site at www.sqlbi.com.

Chapter 12 Creating a Complete Solution

http://www.microsoft.com/en-us/powerbi/default.aspx
http://www.microsoft.com/en-us/powerbi/default.aspx
http://www.mrexcel.com
http://www.powerpivotpro.com
https://blog.crossjoin.co.uk/
http://www.sqlbi.com

335
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_13

CHAPTER 13

Advanced Topics
in Power Query
When you build queries using the Power Query designer, the designer creates the

query using the M query language. Although you can create robust queries using just

the visual interface, there is a lot of useful processing that you can only complete by

writing M code. This chapter goes beyond the basics and explores some of the advanced

functionality in Power Query, including the M query language, parameters, and

functions.

After completing this chapter, you will be able to

• Write queries with the M query language

• Create and use parameters

• Create and use functions

 Writing Queries with M
When you build queries using Power Query, each step you add inserts a line of M query

code. If you select the View tab in the designer and click the Advanced Editor button, you

can edit the M code directly (see Figure 13-1).

336

Each line of code represents the steps applied in the designer (see Figure 13-2).

Figure 13-1. Viewing the M code

Chapter 13 advanCed topiCs in power Query

337

The query starts with the keyword let followed by the steps in the query and ends

with the keyword in followed by the name of the final table, list, or value:

let

 ... steps

in

 Table

The first step in most queries is to connect to a source. In this case, the code is

connecting to an Access database file:

Source = Access.Database(File.Contents("C:\SalesRepAnalysis.accdb"),

 [CreateNavigationProperties=true]),

Figure 13-2. Viewing the applied steps for a query

Chapter 13 advanCed topiCs in power Query

338

The next step is to navigate to the Employee table in the database:

_Employee = Source{[Schema="",Item="Employee"]}[Data],

The data is then filtered to only include rows where the SalesPersonFlag field is true:

#"Filtered Rows" = Table.SelectRows(_Employee,

 each ([SalesPersonFlag] = true)),

The each keyword indicates that the query will loop through each row,

and Table.SelectRows will select the rows where the condition is true. The next step

uses the Table.SelectColumns function to narrow down the number of columns

selected:

#"Removed Other Columns" = Table.SelectColumns(#"Filtered

Rows",{"EmployeeKey",

 "EmployeeNationalID", "FirstName", "LastName", "MiddleName", "Title"}),

Next, a custom column is created by concatenating the FirstName and LastName

columns:

#"Added Custom" = Table.AddColumn(#"Removed Other Columns", "Name",

 each [FirstName] & " " & [LastName]),

The final step is to use the Table.RenameColumns function to change the column names:

#"Renamed Columns" = Table.RenameColumns(#"Added Custom",

 {{"EmployeeNationalID", "Employee ID"}, {"FirstName", "First Name"},

 {"LastName", "Last Name"}, {"MiddleName", "Middle Name"},

 {"Name", "Sales Person"}})

Note that each step in the query references the table in the previous step. Also, the

steps have a comma at the end of the line, except for the last step.

There are many useful functions in the M query language. For example, there are

text, number, date, and time functions. The following code uses the Text.PositionOf

function to find the colon in a text column named ProductNumber:

Text.PositionOf([ProductNumber],":")

Chapter 13 advanCed topiCs in power Query

339

An example of a date function is the Date.EndOfMonth function, which returns the

date of the last day of the month of a date. For example, the following code returns the

end of the month date for an OrderDate column:

Date.EndOfMonth([OrderDate])

Some other useful function categories are the splitter, combiner, and replacer

functions. For example, you can combine or split text by delimiters, lengths, and

positions. The following code is used to combine a list of text values using a comma:

Combiner.CombineTextByDelimiter(", ")

Note For a full list of M functions, refer to the power Query Formula reverence
(https://docs.microsoft.com/en-us/powerquery-m/power-query-m-
function-reference).

As you gain experience with M code, you will be able to build complex queries that

go beyond what you can do with just the visual designer.

 Creating and Using Parameters
The ability to use parameters in your queries is a very useful feature of Power BI Desktop.

Using parameters is an easy way to update parts of your queries without having to alter

the code. For example, you can create a file path using a parameter. When you share the

Power BI Desktop file with a colleague, they can update the path without having to alter

the query.

To create a parameter in Power BI Desktop, launch the Query Editor. On the Home

tab, click the Manage Parameters drop-down and select New Parameter (see Figure 13- 3).

Chapter 13 advanCed topiCs in power Query

https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference

340

This launches a window in which you can define the parameter properties (see

Figure 13-4).

Figure 13-3. Adding a new parameter

Chapter 13 advanCed topiCs in power Query

341

The type can be any type supported by Power Query, such as text, date, or decimal.

The value can be any value or be restricted to a list of values. The list of values can be

entered manually (see Figure 13-5) or come from a query that returns a list.

Figure 13-4. Defining a parameter

Chapter 13 advanCed topiCs in power Query

342

Figure 13-5. Defining a list of values for a parameter

Chapter 13 advanCed topiCs in power Query

343

To use the parameter in your queries, you just replace the hard-coded value with

the name of the parameter. For example, if you create a parameter called “Region,” the

following filter statement

Table.SelectRows(#"Removed Other Columns",

 each ([SalesTerritoryRegion] = "Canada"))

becomes

Table.SelectRows(#"Removed Other Columns",

 each ([SalesTerritoryRegion] = Region))

Once you create a parameter, you can edit the parameter in the Home tab of Power

BI Desktop under the Edit Queries drop-down (see Figure 13-6).

Figure 13-6. Editing parameters

This launches a window where users can edit the parameter values (see Figure 13-7).

Chapter 13 advanCed topiCs in power Query

344

 Creating and Using Functions
One of the powerful features of Power Query is the ability to create functions using M

code. Once a function is created, you can call it from other queries. For example, I have a

set of dates for fire drills at a school and I need to determine the school year it belongs to.

I need to check the date against a reference table that contains the school year, the start

date, and the end date (see Figure 13-8).

Figure 13-7. Setting parameter values

Figure 13-8. School year lookup table

Say you have a date, 1/15/2015, and you need to filter this table so that the StartDate

is less than or equal to the date and the EndDate is greater than or equal to the date.

This will leave one row in the table, and from that row you need to select the SchoolYear

value. The M code to create this query is as follows:

YearLookUp_Table = Source{[Item="YearLookUp",Kind="Table"]}[Data],

 #"Filtered Rows" = Table.SelectRows

 (#"YearLookUp_Table", each [StartDate] <= #date(2015, 1, 15)),

Chapter 13 advanCed topiCs in power Query

345

 #"Filtered Rows1" = Table.SelectRows

 (#"Filtered Rows", each [EndDate] >= #date(2015, 1, 15)),

 SchoolYear = #"Filtered Rows1"{0}[SchoolYear]

in

 SchoolYear

To convert this query into a function, you need to wrap the query into another let

statement:

let

 LookUpSchoolYear = () =>

 [Original query]

in

 LookUpSchoolYear

The next step is to replace the hard-coded date in the query with a parameter you

can pass in. The final query looks like the following:

let

 LookUpSchoolYear = (dt as date) =>

let

 Source = Excel.Workbook(File.Contents("C:\ Drills.xlsx"), null, true),

 YearLookUp_Table = Source{[Item="YearLookUp",Kind="Table"]}[Data],

 #"Filtered Rows" = Table.SelectRows

 (#"YearLookUp_Table", each [StartDate] <= dt),

 #"Filtered Rows1" = Table.SelectRows

 (#"Filtered Rows", each [EndDate] >= dt),

 SchoolYear = #"Filtered Rows1"{0}[SchoolYear]

in

 SchoolYear

in

 LookUpSchoolYear

Once you save the function, you can test it by clicking the Invoke button and entering

a value for the parameter (see Figure 13-9).

Chapter 13 advanCed topiCs in power Query

346

After testing the function, you can now invoke it from within another query.

Figure 13-10 shows how you can use the function to create a new column called

SchoolYear by passing the Date field to the function for each row.

Figure 13-9. Testing the function

Figure 13-10. Using the function in a custom column

Chapter 13 advanCed topiCs in power Query

347

As another example of a function, you have data in the form of the table shown in

Figure 13-11.

You need to transform the data to show a list of dates for the drills grouped by school,

drill type, and year, as shown in Figure 13-12.

Figure 13-11. Initial drill data

Figure 13-12. Summarized drill data

Chapter 13 advanCed topiCs in power Query

348

To do this, rearrange the columns and sort the School, Drill Type, and Year columns

ascending and the Date column descending (see Figure 13-13).

Next, you create a step to group the data using the following code:

=Table.Group(#"Changed Type", {"School", "Drill Type", "SchoolYear"},

 {"Dates", each fCombine([Date]), type text})

Instead of aggregating the data, you pass the list of date values for each group to the

fCombine function. This returns a text value with the dates concatenated together. The

fCombine function in M code is as follows:

let

 Source = Combiner.CombineTextByDelimiter(", ")

in

 Source

Now that you are familiar with writing M code, you are ready to gain some hands-on

experience with the following lab.

Figure 13-13. Preparing the data

Chapter 13 advanCed topiCs in power Query

349

HANDS-ON LAB: ADVANCED QUERY BUILDING WITH POWER QUERY

in the following lab, you will

• Create and use a parameter

• alter a query using M code

• Create and use a function

 1. in the LabstarterFiles\Chapter13Lab1 folder, open the drills.xlsx file. this file

contains data on drills for the various schools in a school district. each tab in

the workbook contains data for a different school year. after reviewing the data,

close the file.

 2. Create a new power Bi desktop file called Chapter13Lab1.pbix. in Chapter 12,

you loaded each worksheet as a separate query and appended the queries

together. you can automate this using M code so that you don’t have to update

the query as more worksheets are added to the workbook.

 3. on the home tab, select Get data from a Blank Query. in the power Query

editor, change the name to drills.

 4. in the source step, add the following code to the formula bar. Make sure you

use the path to where you saved the lab files. you should see each sheet and a

corresponding table in the file (see Figure 13-14).

= Excel.Workbook(File.Contents

 ("C:\LabStarterFiles\Chapter13Lab1\Drills.xlsx"))

Figure 13-14. Loading Excel worksheets and tables

Chapter 13 advanCed topiCs in power Query

350

 5. Filter the Kind column to only show sheets.

 6. Keep the name and the data columns and remove the rest.

 7. add a custom column called tablewithheaders and add the following code:

=Table.PromoteHeaders([Data])

 8. remove the original data column and expand the tablewithheaders column

and don’t include the original column name as a prefix. your data should look

like Figure 13-15.

Figure 13-15. Data after expanding the TableWithHeaders column

 9. rename the name column to schoolyear and change the date and time

columns’ data types to date and time.

 10. now you want to add a parameter that allows users to easily change the path

to the source file. on the home tab under the Manage parameters drop-down,

select the new parameter option. add a text parameter called FilePath that

has a current value that matches the file path you used in step 4.

 11. alter the source step in the Drills query to use the FilePath variable.

= Excel.Workbook(File.Contents(FilePath))

 12. select Close & apply on the home tab to close the Query editor.

 13. to test the parameter, move the drills.xlsx file to a subfolder called data. in the

power Bi desktop, click the refresh button on the home tab. you should get an

error saying that it could not find the file.

Chapter 13 advanCed topiCs in power Query

351

 14. select the edit parameters option under the edit Queries drop-down on the

home tab. update the FilePath. you should now be able to refresh the data.

 15. select the edit Queries option on the home tab. in the Query editor, right-

click the Drills query and select duplicate. rename the new query

DrillTypeList.

 16. remove the last two steps and edit the expanded tablewithheaders step so

that it only selects the drill type column.

 17. remove the name column and remove duplicates from the drill type column.

 18. to convert the column to a list, right-click the header and select drill down (see

Figure 13-16).

Figure 13-16. Converting a column to a list

Chapter 13 advanCed topiCs in power Query

352

 19. add a new parameter called DrillType that uses the list you just created as a

source (see Figure 13-17).

Figure 13-17. Using a list as a parameter source

 20. in the Drills query, add a step that filters it by the DrillType parameter. to

insert the step, select the function symbol in the formula bar (see Figure 13-18).

= Table.SelectRows(#"Renamed Columns", each ([Drill Type] = DrillType))

Chapter 13 advanCed topiCs in power Query

353

 21. Close and apply the changes in the Query editor. test the parameter by

updating it in power Bi desktop and refreshing the data.

 22. Launch the Query editor and create a new blank query named CombineList.

you are going to create a function that takes a list of text values and

concatenates them together.

 23. open the advanced editor and add the following code:

let

 Source = Combiner.CombineTextByDelimiter(", ")

in

 Source

 24. Close the advanced editor.

 25. Make a duplicate of the Drills query and rename it DrillsSummary.

 26. add a step to sort by the schoolyear, school, drill type, and date columns.

 27. remove the time column and change the date column to a text data type.

 28. open the advanced editor and add a grouping step using the following

highlighted code:

#"Changed Type1" = Table.TransformColumnTypes(#"Sorted Rows",

 {{"Date", type text}}),

#"Grouped Rows" = Table.Group(#"Changed Type1", {"SchoolYear", "School",

 "Drill Type"}, {{"Dates", each CombineList([Date]), type text}})

in

 #"Grouped Rows"

 29. Close the advanced editor. the data after grouping the rows should look like

Figure 13-19.

Figure 13-18. Inserting a step into the query

Chapter 13 advanCed topiCs in power Query

354

 30. when you’re done, save the file and close power Bi desktop.

 Summary
Power Query is a very powerful tool used to transform data before it is loaded into the

Power Pivot data model. Although a lot of functionality is exposed by the visual designer,

even more functionality is exposed by the M query language. This chapter went beyond

the basics and explored some of the advanced functionality in Power Query, including

the M query language, parameters, and functions. This chapter only scratched the

surface of advanced querying with M. If you want to learn more, I strongly recommend

Power Query for Power BI and Excel by Chris Webb (Apress, 2014).

The next chapter covers some advanced topics in Power BI that I think you may find

useful, including using custom visuals, advanced mapping, row-based security, and

templates.

Figure 13-19. The final grouped data

Chapter 13 advanCed topiCs in power Query

355
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_14

CHAPTER 14

Advanced Topics in
Power BI Desktop
This chapter covers some advanced topics in Power BI that I think you may find useful.

It includes using custom visuals, advanced mapping, row-based security, templates, and

content packs.

After completing this chapter, you will be able to

• Use custom visuals

• Implement geospatial analysis

• Implement row-based security

• Create templates and content packs

 Using Custom Visuals
Although Power BI includes an impressive set of visuals out of the box, there are times

when they might not fit your needs. The great thing is that Microsoft has provided the

source code for the visuals it ships and have provided an open source framework so that

developers can create their own visuals. Although you probably won’t create your own

visuals, there is an active developer community creating and sharing what they have

done. You can download and import these into Power BI Desktop for use in your own

reports. To view the available visuals, go to the Visuals Gallery at http://app.powerbi.

com/visuals (see Figure 14-1).

http://app.powerbi.com/visuals
http://app.powerbi.com/visuals

356

If you click a visual in the gallery, you can download the visual and a sample Power

BI Desktop file that shows how it is used (see Figure 14-2).

Figure 14-1. Some of the custom visuals available

Figure 14-2. Downloading a custom visual

Chapter 14 advanCed topiCs in power Bi desktop

357

The custom visual is contained in a file with a pbiviz extension. After downloading

the file, open an instance of Power BI Desktop. At the lower right corner of the

Visualizations toolbox, click the ellipses (see Figure 14-3). This will give you the option of

adding or removing a custom visual.

Figure 14-3. Adding a custom visual

To add the visual, you just import the pbiviz file. After importing the visual, you will

see a new visual icon in the toolbox.

It’s a good idea to download and experiment with the demo file. They usually give

you hints on using the visual and explain the various properties. Figure 14-4 shows the

Bullet Chart in a demo report.

Figure 14-4. The Bullet Chart in a demo report

Chapter 14 advanCed topiCs in power Bi desktop

358

Another place to get some interesting visuals is at the OKViz web site (http://

okviz.com). They have a Synoptic Panel visual that allows you to create areas on images

and assign colors and display information driven by your data. For example, you can

create a map of a warehouse and display the number of parts in stock (see Figure 14-5).

The color indicates how close you are to the safety stock level.

Figure 14-5. Using the Synoptic Panel custom visual

I recommend that you investigate the custom visuals available. There are many

visuals you will find beneficial to displaying and analyzing your data.

 Implementing Geospatial Analysis
As you saw in Chapter 8, if the data you are analyzing has a location component,

displaying the data on a map is a powerful way to gain insight and analyze the data.

There are many different options available when mapping data in Power BI. You can

use the built-in map, filled map, or shape map. You can also use custom visuals such

as the Synoptic Panel or the Globe Map. There is also an ESRI ArcGIS visual for Power

BI. Selecting the right map comes down to how you want to display the data, whether

you need to include custom maps, and whether you need to include multiple map

layering.

Chapter 14 advanCed topiCs in power Bi desktop

http://okviz.com
http://okviz.com

359

If you need advance mapping capabilities such as clustering, heat maps, filtering,

and multiple layers, there are several good third-party controls you can use. Two that are

very good are the ArcGIS Map visual for Power BI by ESRI (www.esri.com/software/

arcgis/arcgis-maps-for-power-bi) and the Mapbox visual by Mapbox (https://www.

mapbox.com/). Figure 14-6 shows an ArcGIS Map depicting pothole locations imposed

over a map layer showing population density.

Figure 14-6. A multilayer ArcGIS Map

Figure 14-7 shows a clustered map using the Mapbox visual; as you drill into the

map, you can see the individual data points that make up the clusters (see Figure 14-8).

Chapter 14 advanCed topiCs in power Bi desktop

http://www.esri.com/software/arcgis/arcgis-maps-for-power-bi
http://www.esri.com/software/arcgis/arcgis-maps-for-power-bi
https://www.mapbox.com/
https://www.mapbox.com/

360

Figure 14-7. Cluster map using the Mapbox visual

Figure 14-8. Drilling down to individual points

Chapter 14 advanCed topiCs in power Bi desktop

361

You have many options when considering geospatial analysis using Power BI. If

you just need basic mapping, the native map visuals are very capable. If you need more

powerful features such as multilayering, clustering, and map-based filtering, there are

third-party tools that are up to the task.

 Implementing Row-Based Security
Security is an important aspect of any reporting system. It is critical that users only see

data that they are authorized to see. To implement security in Power BI, you set up roles

and use DAX to enforce data access rules. For example, you can create a role for USA

Sales and authorize them to see sales for stores in the United States (see Figure 14-9).

Figure 14-9. Creating roles and DAX filters

Once you set up the roles and rules, you can test the security by viewing the reports

as a member of the role would (see Figure 14-10).

Chapter 14 advanCed topiCs in power Bi desktop

362

Once you deploy the Power BI Desktop file to the Power BI Service, you can assign

users and groups to the roles (see Figure 14-11).

Figure 14-10. Testing the role security

Figure 14-11. Assigning users and groups to a role

Chapter 14 advanCed topiCs in power Bi desktop

363

Being able to secure your data is crucial to any successful enterprise reporting/

analytics solution. Using row-level security is a great way to ensure that data is only

exposed to users authorized to see it.

Note in order to implement row-level security, you need to have a power Bi pro
license.

 Creating Templates and Content Packs
When sharing your Power BI Desktop files, you can make a copy of the pbix file, but

this also contains the data. A better way is to create a template file based on the Power

BI Desktop and share that. The template doesn’t contain the data but does contain all

definitions of the data model, reports, queries, and parameters. When you import the

template, you are prompted for any parameters defined in the file. This is very useful

when the file is moved to a new environment. For example, when you share a file with a

colleague, they can easily specify the file path to a local data source.

To create a template file, click File ➤ Export in Power BI Desktop and choose the

Power BI Template (see Figure 14-12).

Chapter 14 advanCed topiCs in power Bi desktop

364

Figure 14-12. Creating a Power BI Desktop template file

Chapter 14 advanCed topiCs in power Bi desktop

365

Once you save the file, it will have a pbit extension. When a user opens the template

file, they are asked to provide any parameter values (see Figure 14-13).

Figure 14-13. Providing parameter values

When the user saves the file, it becomes a Power BI Desktop file with the pbix

extension.

Although using templates is a great way to share Power BI Desktop files, if you

want to package up a complete solution for deployment to the Power BI Service,

content Power BI Apps are the way to go. With Power BI Apps, you can package up your

dashboards and reports for your colleagues to use. Once you create the app, you publish

it to the Power BI Service, where you can expose it to the entire organization or members

of a security group. If you restrict the app to a specific group, only members of the group

will be able to see it in the app library. Members of the group have read-only access to

the reports and dashboards. The app owner can modify and republish the app. Users of

the app will automatically see the updates.

To create an app, deploy the Power BI Desktop file to a Power BI Service workspace.

Create any dashboards you want to include in the app (see Figure 14-14).

Chapter 14 advanCed topiCs in power Bi desktop

366

Choose the reports and dashboards you want to include in the app (see Figure 14- 15).

Figure 14-14. Selecting the workspace node

Figure 14-15. Choosing the reports and dashboards

Chapter 14 advanCed topiCs in power Bi desktop

367

Once you select the content for the app, click the Publish app link in the upper right-

hand location of the portal (see Figure 14-16).

Figure 14-16. Publishing the app

Next, you set the app name, description, and optional support site. You can also

upload a logo and pick a color theme (see Figure 14-17).

Figure 14-17. Setting app properties

Chapter 14 advanCed topiCs in power Bi desktop

368

On the navigation tab, you can set up a custom navigation pane for the app. Using

the permissions pane, you can choose to expose the app to the entire organization or

specific users and groups (see Figure 14-18).

Figure 14-18. Setting Permissions

After publishing the app, users can go to the Application node in the navigation pane

and select the get app button in the upper right corner (see Figure 14-19).

Figure 14-19. Getting a Power BI App

You can search your organization’s apps and subscribe to the ones shared with you

(see Figure 14-20).

Chapter 14 advanCed topiCs in power Bi desktop

369

In addition to your organizational apps, many apps from Microsoft and other

vendors are available (see Figure 14-21). For example, there are Power BI Apps for

Salesforce, Dynamics CRM, Office 365, and Azure Audit Logs. These allow you to get up

and running quickly and deploy dashboards related to the service.

Figure 14-20. Selecting apps shared with you

Chapter 14 advanCed topiCs in power Bi desktop

370

Note to create power Bi apps, you need to have a power Bi pro license.

Now that you are familiar with some advanced features of Power BI Desktop, you are

ready to gain some hands-on experience with these features in the following lab.

HANDS-ON LAB: ADVANCED TOPICS IN POWER BI

in the following lab, you will

• Use some custom visuals

• implement row-level security

• Create a power Bi template

Figure 14-21. Selecting a Power BI App from vendors

Chapter 14 advanCed topiCs in power Bi desktop

371

 1. in the LabstarterFiles\Chapter14Lab1 folder, open the Customvisuals.pbix file.

this file contains data on sales and quotas for sales reps.

 2. in the LabstarterFiles\Chapter14Lab1 folder, there is a visuals folder

that contains several custom visual pbviz files. add these visuals to the

visualizations toolbox in power Bi desktop. after importing the visuals, you

should see the new icons in the toolbox (see Figure 14-22).

Figure 14-22. Adding custom visuals to the toolbox

 3. add the following visuals and fields to the wells, as indicated in table 14-1.

Table 14-1. Adding Visuals and Fields to the Wells

Visual Well Fields

hierarchyslicer Fields period.Year

period.Quarter

BulletChart Category rep.Lastname

value sales.totalsales

targetvalue Quota.Quota

Minimum Quota.seventypercentQuota

satisfactory Quota.ninetypercentQuota

veryGood Quota.Quota

Chapter 14 advanCed topiCs in power Bi desktop

372

 4. the final report page should be similar to Figure 14-23. investigate the different

formatting available in the visuals.

Figure 14-23. Report, Page 1, with custom visuals

 5. add a second page to the report and add the visuals and fields to the wells as

shown in table 14-2.

Table 14-2. Adding Page 2 Visuals and Fields to the Wells

Visual Well Fields

tornado Group territory.region

values sales.sales2015Q1

sales.sales2016Q1

wordCloud Category rep.Lastname

values sales.totalsales

Chapter 14 advanCed topiCs in power Bi desktop

373

 6. the final report page should be similar to Figure 14-24. take some time to

investigate the different formatting available in the visuals. Close and save the

file when finished.

Figure 14-24. Report, Page 2, with custom visuals

 7. in the LabstarterFiles\Chapter14Lab1 folder, open the rowLevelsecurity.pbix file.

 8. on the Modeling tab, select Manage roles. add the northamericansales,

pacificsales, and europeansales roles.

 9. Using a daX filter, restrict the territories they can see. Figure 14-25 shows the

daX filter for the pacificsales role.

Chapter 14 advanCed topiCs in power Bi desktop

374

 10. test the filter by selecting the view as roles. if you view page 1 of the report

as the europeansales role, you should only see France, Germany, and United

kingdom data (see Figure 14-26).

Figure 14-25. Setting role-based filters

Figure 14-26. Testing the EuropeanSales role

Chapter 14 advanCed topiCs in power Bi desktop

375

 11. once done testing the roles, save the file. on the File tab, click export and

export the file as a power Bi template file. add a template description and save

the file as templatedemo.pbit.

 12. Close power Bi desktop and double-click the template file. this should launch

power Bi desktop and ask you for the folder path. provide the path to the data

folder which holds the salesrepanalysis.accdb file and click Load.

 13. after the data loads, save the file as templatedemo.pbix.

 14. Close power Bi desktop and compare the size of the template file with the original

pbix file. the template file doesn’t contain data, so it should be much smaller.

 Summary
This chapter covered some advanced topics in Power BI, including using custom visuals,

advanced mapping, row-based security, templates, and Power BI Apps.

The next chapter is a new chapter I have added to this edition of the book. It covers

some advanced topics in Power BI data modeling that I think you will find useful.

It includes direct queries, composite models, and dataflows. These topics are very

important as you move to larger data models and toward a centralized data model for

the enterprise.

Chapter 14 advanCed topiCs in power Bi desktop

377
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6_15

CHAPTER 15

Advanced Topics in
Power BI Data Modeling
This chapter covers some advanced topics in Power BI data modeling that I think you

may find useful. These are important for analyzing data over very large data sets. It

includes direct queries, aggregation tables, and dataflow.

After completing this chapter, you will be able to

• Determine when to use DirectQuery

• Use aggregation tables

• Use dataflows to populate a Common Data Model

 Direct Queries
Throughout this book we have been importing the data into the Power BI tabular model.

For most cases this is the preferred method for connecting to data sources and working

with the data. If the data in the source changes, we need to reconnect to it and import the

data. There is no permanent connection maintained to the source data. After importing

the data, it is highly compressed and the size of the data in Power BI is much smaller

than the size of the data in the source system. By importing the data, you get the full

functionality of Power BI and Power Query. You can import data from multiple sources

and combine them into the model. You can schedule refreshes up to eight times per

day if needed (more if you use Power BI Premium). Because the data is contained in the

model, this gives you the maximum performance and response time.

Although in most cases importing the data is your best option, there are some use

cases when you need to choose the direct query option for connecting to the data. Power

BI has a limit of 1 GB per model (unless you are using Power BI Premium). So, if you

378

need to deal with very large data sets, you must use the DirectQuery option. Another

use case for using the Direct Query option is the volatility of your data. If the data in your

data source is continuously updating and you need to reflect the changes in your reports,

then you need to use the direct query option.

Although you need to use DirectQuery in these limited use cases, it comes with

many downsides. The biggest problem with DirectQuery is performance. Every time

you interact with your report, several queries are issued back to the data source and,

depending on the source and your network connection, this can be very slow and even

time out. Another big disadvantage with DirectQuery is that it only supports a subset of

the DAX functions.

Figure 15-1. Choosing between Import and DirectQuery

Because of the limitations and poor performance of direct query-based models,

Microsoft has introduced aggregation tables in Power BI. Aggregation tables enable

users to interact with big data sets while maintaining peak performance. We will look at

these next.

 Using Aggregation Tables
Analyzing big data sets is a real challenge when it comes to performance. If the data set

is too big to import into the data model, you will need to use DirectQuery which has

some real performance issues. One way to get around this is to analyze your queries

and preaggregate the data before it is imported into the model. While this works well,

Chapter 15 advanCed topiCs in power Bi data Modeling

379

what happens when you need to drill down to the individual record level? This is where

aggregate tables built into and managed by the Power BI model shine.

Aggregate tables boost query performance by caching data at the aggregate level and

issuing direct queries at the detail level. So, if you wanted to look at sales data rolled up

by month and year, it would come from the aggregate table. At the same time, you could

drill down to see the sales for a single day. This would issue a direct query that would

perform quickly because you are only returning a small subset of the data.

As an example, suppose we have the data model shown in Figure 15-2. It contains a

sales fact table and several dimension tables. The sales table contains billions of rows, so

we are initially using a direct query to the data source.

Figure 15-2. A big data model

Chapter 15 advanCed topiCs in power Bi data Modeling

380

Since most of the time the sales are analyzed by grouping at the customer, date,

and/or the product subcategory levels, we can create a sales fact table rolled up to the

CustomerKey, DateKey, and ProductSubcategoryKey levels. The aggregate table can be

created in the data source or in Power Query. After creating the sales aggregate table, it is

added to the model as shown in Figure 15-3.

Figure 15-3. Adding an aggregate table to the model

Chapter 15 advanCed topiCs in power Bi data Modeling

381

Next, we set the storage mode of the sales aggregation to import (see Figure 15-4).

Once you set the storage mode, you will see a dialog asking if we want to set the

related tables to the dual storage mode. This will allow the related tables to either get

data from imported data or from a direct query depending on whether data is retrieved

from the sales aggregate table or the sales table. To set this up, you need to right-click the

table in the field list pane and select the manage aggregation option (see Figure 15-5).

Figure 15-4. Setting the storage mode to import

Chapter 15 advanCed topiCs in power Bi data Modeling

382

This displays the Manage aggregations dialog which shows a row for each column in

the Aggregated table (see Figure 15-6). This is where you map the aggregated columns

to the detail columns. If you are using multiple aggregation tables, you can also set the

precedence of the aggregation.

Figure 15-5. Managing aggregations

Chapter 15 advanCed topiCs in power Bi data Modeling

383

Looking at the visuals in Figure 15-7, the visual on the left uses the aggregation table

while the one on the right needs to issue a direct query back to the data source.

Figure 15-6. Mapping the aggregations

Figure 15-7. Comparing visual queries

Chapter 15 advanCed topiCs in power Bi data Modeling

384

Aggregation tables are a great way to increase performance when working with large

data sets. Another challenge you run into when working with large data sets is prepping

the data. This is where dataflows come into play as you will see next.

 Implementing Dataflows
Dataflows are used to prepare big data for use in reporting. Instead of working with data

in Power BI Desktop, you work with the data in the Power BI Service. The cool thing

about dataflows is that it uses Power Query for data preparation and provides a very

similar experience to working with Power Query in the Power BI Desktop. Dataflows are

designed to use the Common Data Model. Data in the Common Data Model is stored in

Azure Data Lake, which is designed to work efficiently with big data. The Common Data

Model is also a central repository where you can share data across the enterprise as well-

defined entities that have consistent schemas and data linage.

To create a dataflow, you need to go to the Power BI Service and create/select a

workspace other than the default My workspace (see Figure 15-8).

Figure 15-8. The Dataflows tab in a Power BI Workspace

Chapter 15 advanCed topiCs in power Bi data Modeling

385

Use the Create button in the top right of the page and select Dataflow in the

drop- down list (see Figure 15-9).

You will then be given the option to create or import an existing entity

(see Figure 15- 10).

Figure 15-9. Creating a new dataflow

Chapter 15 advanCed topiCs in power Bi data Modeling

386

Selecting Add new entities will present you with a screen where a data source can be

selected (see Figure 15-11).

Figure 15-10. Defining a new entity

Figure 15-11. Selecting a data source

Chapter 15 advanCed topiCs in power Bi data Modeling

387

After selecting a data source, you provide connection information and connect to the

data source (see Figure 15-12).

Figure 15-12. Connecting to a data source

Chapter 15 advanCed topiCs in power Bi data Modeling

388

Once you connect to the data source and select the data, you can transform the data

(see Figure 15-13).

Figure 15-13. Selecting the data

Chapter 15 advanCed topiCs in power Bi data Modeling

389

Selecting the Transform data button launches the Power Query interface (see

Figure 15-14).

Although not exactly the same as Power Query in the Power BI Desktop, it is very

similar, and you should be quite comfortable with transforming data using Power Query

online. Once you save and close the queries, they become entities stored in Azure Data

Lake and can be integrated into the Common Data Model.

The Common Data Model is used to streamline data management and app

development by combining data into a known form and employing structural and

semantic reliability across numerous apps and deployments. It provides the link between

self-service BI and enterprise governance over the vast amount of data available.

You can connect to a dataflow or the Common Data Service (which hosts the

Common Data Model) just as you would any other data source in Power BI (see

Figure 15-15).

Figure 15-14. Power Query online

Chapter 15 advanCed topiCs in power Bi data Modeling

390

Now that you have some understanding of aggregations and dataflows, let’s get some

hands-on experience with these topics.

Figure 15-15. Connecting to dataflows

Chapter 15 advanCed topiCs in power Bi data Modeling

391

Note to complete the following lab, you need to have access to an
adventureworksdw2017 demo database. You can find installation instructions
for installing the sQl server 2017 developer edition at http://www.
sqlservertutorial.net/install-sql-server/. You can find instructions
to install the adventureworksdw2017 demo database at https://docs.
microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver15

HANDS-ON LAB: ADVANCED TOPICS IN POWER BI

in the following lab, you will

• Create and use an aggregate table

• Create a dataflow

 1. in the labstarterFiles\Chapter15lab1 folder, open the Chapter15lab1.pbix

file. this file uses direct query to get data from the adventureworksdw2017

database.

 2. You will need to point your data source settings to the location of your instance

of the data warehouse. to do this, select the edit Queries drop-down on the

home tab and choose data source settings. in the pop-up window, select

Change source and enter your server information (see Figure 15-16).

Chapter 15 advanCed topiCs in power Bi data Modeling

http://www.sqlservertutorial.net/install-sql-server/
http://www.sqlservertutorial.net/install-sql-server/
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15

392

 3. if you successfully connect to the database, you should see data listed in the

power Query program window. Choose Close & apply. (if you get a warning

about not being able to make an encrypted connection, select oK.)

Figure 15-16. Updating the data source setting

Chapter 15 advanCed topiCs in power Bi data Modeling

393

 4. select the data modeling tab and observe the data model (see Figure 15-17).

 5. Using power Query, right-click the sales table query and select duplicate.

 6. Using the duplicate table, create an aggregated sales table that sums up the

sales amount and order count by salesterritoryKey and orderdateKey using the

import mode (see Figure 15-18).

Figure 15-17. The Adventureworks data model

Chapter 15 advanCed topiCs in power Bi data Modeling

394

 7. add the table to the model and create the relationships to the salesterritory and

date tables (see Figure 15-19). Make sure the data types in the aggregation

table match those in the details table.

Figure 15-18. Creating the sales aggregation table

Chapter 15 advanCed topiCs in power Bi data Modeling

395

 8. right-click the sales_agg table and select Manage aggregations.

 9. Map the aggregation columns to the detail columns. if you can’t select the

detail column, double-check the data types for a mismatch.

Figure 15-19. Adding the aggregate table

Chapter 15 advanCed topiCs in power Bi data Modeling

396

Figure 15-20. Mapping columns between the agg and detail tables

 10. after mapping the columns, the aggregation table will be hidden in report view.

Change the salesterritory and date tables so they have a storage mode of dual

(see Figure 15-21).

Chapter 15 advanCed topiCs in power Bi data Modeling

397

 11. Creating a visual that sums up sales by country uses the sales_agg table, while

one that sums up sales by product category uses the sales table and issues a

direct query back to the database (see Figure 15-22).

Figure 15-21. Setting Dual storage mode

Chapter 15 advanCed topiCs in power Bi data Modeling

398

 12. save and close the pbix file.

CREATING A DATAFLOW

 1. log into the power Bi service and create a new workspace called mydataflows.

(For a review of the power Bi service and workspaces, see Chapter 9.)

 2. Create a data gateway to connect to the adventureworksdw2017 database.

(For a review of data gateways see Chapter 9.)

 3. in the new workspace, select Create new workflow (see Figure 15-9).

 4. next, select add new entities as in Figure 15-10.

 5. in the Choose data source screen on the database tab, select the sQl server

database (see Figure 15-23).

Figure 15-22. Using the aggregation table in a visual

Chapter 15 advanCed topiCs in power Bi data Modeling

399

 6. enter the connection information to the sQl database (see Figure 15-24).

Figure 15-23. Selecting the data source

Figure 15-24. Connecting to the database

 7. once connected to the database, select the dimproducts table and click the

transform data button (see Figure 15-25).

Chapter 15 advanCed topiCs in power Bi data Modeling

400

 8. You should now be in power Query online. rename the query to product and

transform the data so it looks similar to Figure 15-26.

Figure 15-25. Selecting the data

Figure 15-26. Transforming the database

Chapter 15 advanCed topiCs in power Bi data Modeling

401

 9. save and close power Query. name the dataflow adventureworks. You now

have a dataflow adventureworks with an entity product.

 10. open power Bi desktop and select get data; then select power Bi dataflows

(see Figure 15-27).

 11. You should then be able to select the product entity in the adventureworks

dataflow (see Figure 15-28). once imported into the model, it acts just like any

data source in power Bi desktop.

Figure 15-27. Selecting Power BI dataflow as a data source

Chapter 15 advanCed topiCs in power Bi data Modeling

402

 Summary
This chapter briefly covered some advanced topics in Power BI, including aggregations

and dataflows. These are a few of the technologies being introduced to facilitate big data

and enterprise governance. They are important topics and you should delve deeper

into them if you need to work with big data scenarios. Microsoft is also committed to

providing tools and technologies like dataflows and the Common Data Model to simplify

reusability, security, and tracking data lineage throughout the organization.

Microsoft is committed to making Power BI the best reporting/analytics tool

available for both self-service and enterprise level. New features and improvements are

being released monthly. Remember, this book is the first step to learning the Power BI

stack, not the last. Hopefully, I have given you a firm foundation on which to build. I wish

you well on your journey and don’t forget you have the Power (BI) to succeed!

Figure 15-28. Loading a dataflow entity into the Power BI data model

Chapter 15 advanCed topiCs in power Bi data Modeling

403
© Dan Clark 2020
D. Clark, Beginning Microsoft Power BI, https://doi.org/10.1007/978-1-4842-5620-6

Index

A
Advanced query building

column to list, conversion, 351
Drills query, 350, 351
excel worksheets and tables, 349
FilePath parameter, 350
grouped data, 354
list, parameter, 352
M code, 349
Query Editor, 353
TableWithHeaders, 350

Aggregation tables
data model, 379
data sets, 378
management, 381, 382
mapping, 382, 383
storage mode, 381
visuals queries, 383

ALL function, 134, 136
ALLSELECTED filter functions, 138
Analysis services, data, 40–41

B
BI interface, Excel

chart type, 300, 301
column chart, 299, 300
conditional formatting, 298
cube functions, 297, 303
CUBEVALUE function, 304

dashboard, 302, 303
pivot table, 298, 299
slicers filter, 301, 302

C
CALCULATE function, 134–136, 138, 146,

149, 157, 162, 163, 170
Calculated column, creation

add new column, 121
autocomplete feature, 121, 122
error message, 122
lab experience

calendar table, 124
products table, 124
store sales, 123
text functions, 122

Calculations and measures, Power Pivot
context, 265
Data view, 263
DAX formula, 264
filter context, 266
measure creation, 264, 265
query context, 266
row context, 266

Cascading filters, 283
Columns, insertion

advanced editor, 67
column creation, 67, 68
M code, query, 66, 67
query result, 68, 69

https://doi.org/10.1007/978-1-4842-5620-6

404

COUNTX function, 141
Cube functions

cell references, 296
data, rearrange, 297
defined, 294
model connect, 295
pivot table, 295
retrieve values, 296

Custom visuals
add/remove, 357
DAX filter, 373, 374
demo report, 357
download, 356
filter, testing, 374
pbiviz extension, 357
report page, 372, 373
Synoptic Panel visual, 358
toolbox, 371
visuals and fields, 371
Visuals Gallery, 355, 356

D
Dashboard

add tiles
Q&A window, 221–223
text tile, 224
visual, pinning, 220, 221
visual, selecting, 218

Power BI Desktop to Service
content, selection, 216, 217
file location, selection, 217
navigation pane, 216
signed up, 214
view reports, 217

publish records, refresh data
creating daily refresh, 244
daily refresh, 229

data source to gateway, add, 228, 233
gateway settings, 232
install gateway, 230, 231
local file, connection, 234
Pinning tile, 237
Power BI portal, 235–237
Q&A window, 239
refresh schedule, 241
tile menu, 239, 240

share
data sets, 225
end users, 226
group workspaces, 226
public link to report, 228
publish report to web, 226, 227

user-friendly model
data category, setting, 214
hiding fields, 212
summarize, setting, 213

Data
append, 62
split, 62–63
unpivoting, 63–65

Data Analysis Expressions (DAX)
calculations create, 108
cells, rows, 108
date and time functions, 113–115
defined, 105
Excel formula, 106
implicit conversion, 108
informational functions, 117
logical functions, 116
Math and Trig functions, 119
operators, 109
Power BI, 107
RELATED function, 117, 118
standard deviation, 120
statistical functions, 120

Index

405

table data type, 108
text functions, 112

Data feeds, 2, 38
Dataflows

Adventureworks data model, 393
aggregation table, 395
Common Data Model, 389
connection, 389, 390
creation, 385
database connection, 399
database transformation, 400
data selection, 388, 400
data source, 386, 387, 399
dual storage mode, 397
entity, 402
import, entity, 385, 386
mapping, 396
Power BI dataflow, 401
Power BI service, 384
Power Query interface, 389
sales aggregation table, 394
updating, 392
visualization, 398

Data model
customer table, 78
defined, 77
foreign key, 79
natural key, 80
non-normalized table, 78, 79
normalization, 78
primary key, 79
surrogate key, 79, 80
tables, relate, 79
time stamp, 78

Data model, creation
additional tables, select, 97, 98
Adventureworks database, 97
columns, rename, 101

Data view, 94, 95
Edit relationship, 96
hierarchy, 103, 104
merged columns, select, 100
merge queries, 98, 99
Model view, 96
Power Query window, 93
query loading, disable, 102
view, relationships, 103

Data, slicing
cascading filters, 283
PivotTable Analyze, 282
Report Connections, 281, 282
slicer fields, 280, 281
slicer settings, 282, 283

DAX
aggregates, creating

adding measure, 129
DAX formula, 131
functions, 131, 132

filter functions, 135, 136
CALCULATE function, 136, 138
COUNTX function, 141
employee count, 141, 142
MAX function, 142
Power Pivot model, 137
resulting matrix, 138, 139

mastering data context
filter context, 133
Power Pivot model, 132
Query context, 133

measures vs. attributes
analyzing data matrix, 128
financial fact table, 127, 128

operators
arithmetic operators, 110
comparison operators, 110, 111
logical operators, 111

Index

406

nesting formula, 111
text concatenation operators, 110

Query context, alter, 134, 135
variables, using

creating measures, 143
matrix creation, 145
nonactive relationship, 148
Power Pivot model, 144
query context, testing, 146
testing measures, 146, 148, 149
VAR keyword, 143

Denormalization
customer and geography table, 88, 89
customer data, 87, 88
merge function, 89
query, 88

Direct queries, 377, 378
Direct Query mode, 26
Discover and import data

data sources, 49, 50
navigator pane, 51
Power Query Editor, 48
query, create, 48, 49
Query Editor, 52
SQL Database, 50, 51
SSIS, 47

E
ESRI ArcGIS visual, 358
Excel, 106, 107, 277, 288
Excel cube functions, 294

F
fCombine function, 348
Filter context, 131, 133, 134, 145, 166
Filter function, 135, 136, 138, 142, 149

FIND function, 113
FORMAT function, 113
Functions, M code

column, creation, 346
data, preparation, 348
fCombine, 348
initial drill data, 347
query, 344, 345
summarized drill data, 347
testing, 346

G, H
Geospatial analysis

ArcGIS Map, 359
custom visuals, 358
individual points, 360
Mapbox visual, 359, 360

Group and aggregate data, 65–66

I, J, K
Import data

analysis services (see Analysis services)
data feed, 38–40
relational database (see Relational

database)
text file

CSV format, 35
data, preview, 37
Excel file, 37, 38
text/csv file, 35, 36

ISERROR function, 116

L
Line chart, 187, 205, 315, 333
Load data, power pivot

Access database, 42, 43

DAX (cont.)

Index

407

explore data, 45, 46
Get Data, 42
tables and views, 44
text file, 44, 45

M
Mapbox, 359, 360
MAX function, 142
Merge data

columns, 61
CSV file, 58
import tables, 58
loading, disable, 58, 59
Merge window, 59, 60
queries, 60
table, 60, 61

M query code
access database file, 337
column, custom, 338
date function, 339
editing, 335, 336
functions, 338
keyword, 337
query loop, 338
steps, designer, 336, 337
Table.RenameColumns, 338

Multidimensional Expressions
(MDX), 3

Multiple charts, 293, 294

N
Normalization, 78

O
OKViz web site, 358

P
Pivot Charts

add, 288, 289, 292
chart type, 290, 291
creation, 289, 290
data source, 289
dashboard, 292, 293

Pivot table
fields, select, 279, 280
filter, 278
insertion, 278, 279
parts, 278
slicers, 272, 278

Power BI
agile data analysis, 2
benefits, 2
data engine, 1
Excel workbooks, 2
OLAP database, 1
one-off data analysis, 2
Service portal, 2

Power BI Desktop, creating reports
Bar chart, 179
bubble chart, 190, 191
clustered column chart, 182
column chart, 179, 180, 185
donut chart, 186
download, 4
environment, set up, 4, 5
line chart, 183, 184, 187
Map-based visualizations, 193

category, 193
custom shapes, using, 196
fields, 192
filled map, 194, 195
tiles, 191
viewing data, 192

Index

408

pie chart, 186
preview features, 5
scatter chart, 188, 189
stacked column chart, 180, 181
tables and matrices

customer contact information, 175
detail-level records, 178
filter list, 175, 176
formatted table, 177, 178
formatting options, 177, 179
Visualizations toolbox, 174

Power BI Desktop interface
Data view, 17, 18
Data view tab, 8
expand and collapse matrix, 16
matrix table, 13
Model view, 8, 9, 19
Options window, 11, 12
report, 6, 7
Report view tab, 9
Slicer visual, 16, 17
startup screen, 6
switch views, 7
visualizations and fields

windows, 9, 10
visualizations window, 15
visual properties and field list, 13, 14

Power Pivot
COM Add-ins, 250
data model creation

data types, 271
Excel, 268
filter data, 269, 270
Load data model, 274
Load To option, 273
merge query, 271, 272
new column, 273

Query Editor, 268, 269
table relationship, 275, 276
time format, 275

defined, 248
enable/disable add-in, 249
Excel, 248, 250, 251
model, 132, 137, 144
time-based analysis, 266–268

Power Query, 46, 47, 317
advanced query (see Advanced query

building)
functions (see Functions, M code)
M queries (see M query code)
parameter

creation, 339
define, 340, 341
editing, 343
list of values, 341, 342
set values, 343, 344

Power Query Editor, 28, 66
Power Query interface, Excel

CSV file, 252–254
data sources, 252
group data, 258
import data, 251
Power Query Editor, 253
replace values, 255
split column, delimiter, 257
steps, manage, 256
Transform Data, 253

Power Query, works
airline delay data, 70
DelaySummary query, 73
edit queries, 70
Enable load, disable, 71
expand table, 75
FlightDelays, 70, 72
grouping, 72

Power BI Desktop, creating reports (cont.)

Index

409

merging data, 74
Number filters option, 71
rename query, 72
Text/CSV option, 72

Q
Query context, 129, 133, 134, 146

R
RELATEDTABLE function, 118
Relational database

Advanced Options, 32
connection information, 26
data, preview, 34
Diagram View, 31
external data grouping, 23
foreign keys, 22
import mode, 29
many-to-many relationship, 22, 23
one-to-many relationship, 21, 22
Power Query Editor, 28
query, information, 27, 28
select data sources, 23–25
SQL query, 32, 33
table relationship, 31, 32
tables and fields, 30, 31
tables and views, 27

Relational database management
systems (RDMS), 21

Reseller sales analysis
calculated column, 321, 322
dashboard creation

Excel sheet, 326, 328
maximum reseller sales, 327
Max Resellers, 328
TOPN function, 327

load data
import data, 320
Power Query, 317
rename tables, 318–320
sales data, 316
source tables, 317
Transform Data, 316

measures creation
field list, 322, 323
filtered measures, 325, 326
PivotTable, 322, 323, 324
sales table, 322, 325
testing, 324, 325

model creation, 320, 321
Row-Based Security

DAX, 361
role security, 361, 362
users and groups, 362

S
Sales quota analysis

data, load
Excel workbook, 308
load option, 309, 310
Power BI Desktop file, 306
query data, 309
query result, 311
tables, select, 306
TimePeriod column, 307, 308, 310

measure creation, 313
model creation, 311, 312
report creation, 314–315

Sensor analysis
aggregate and group data, 331
latitude and longitude data, 331
merge query, 329, 330
monitor power, 329

Index

410

Power BI Desktop file, 329
visual map, 332

SQL Server Analysis Server (SSAS), 3, 40
SQL Server Integration Services (SSIS), 47
Star schema, 86

advantage, 87
denormalization, 87
fact table, 87

SUM function, 132, 134
SUMX function, 118, 131, 132

T
Table relations, creation

active relationships, 81
composite key, 80
Diagram View, 82, 83
duplicate value warning, 85
error, 83
flights table and carriers table, 84, 85
inactive relationship, 83, 84
Manage relationships, 80, 81
one-to-many, 80

Table relationships
dimension tables, 258
fact table, 259
Power Pivot

Diagram View, 260
edit relationships, 261, 262
manage relationships, 261
model editor, 260
Relationship view, 262

star schema, 259
Templates, creation

app owner, 365
app properties, 367
apps, share, 369

pbit extension, 365
permissions, set up, 368
Power BI App, 368–370
Power BI Desktop, 363, 364
Publish app, 367
reports and dashboards, 366
workspace, 365, 366

Transform, clean data
airline flight data, 52, 53
filter columns, 54, 55
filter rows, 56
Query Editor, 57
replace values, 53, 54
transformations, 52

U
USERELATIONSHIP function, 148
User-Friendly model

fields, hide, 89
hierarchies, 91

add level, 92
creation, 91, 93

one column by another column
sorting, 90

rename, tables and columns, 89
sort order, change, 90

V, W
Visualizations

drilling
controlling actions, 202
enabling actions, 201

Power BI desktop
adding fields, 208
adjusting date range, 207
Axis field, 205, 206

Sensor analysis (cont.)

Index

411

format table, 202
mapping cases, 209
stacked bar chart,

creating, 203
tree map, creating, 204
turning off filtering, 205

Power BI, link in
bar chart, 196, 197
control interaction, 199, 200
Interactive filtering, 196, 198

Pivot Table
charts and graphs, 288
conditional formatting, 284, 285
heat map, example, 286, 287
Manage Rules option, 285, 286
spark lines, 287, 288

X, Y, Z
xVelocity, 3

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Power BI
	Why Use Power BI?
	The xVelocity In-Memory Analytics Engine
	Setting Up the Power BI Environment
	Exploring the Power BI Desktop Interface
	Summary

	Chapter 2: Importing Data into Power BI Desktop
	Importing Data from Relational Databases
	Importing Data from Text Files
	Importing Data from a Data Feed
	Importing Data from Analysis Services
	Summary

	Chapter 3: Data Munging with Power Query
	Discovering and Importing Data
	Transforming, Cleansing, and Filtering Data
	Merging Data
	Appending Data
	Splitting Data
	Unpivoting Data
	Grouping and Aggregating Data
	Inserting Calculated Columns
	Summary

	Chapter 4: Creating the Data Model
	What Is a Data Model?
	Creating Table Relations
	Creating a Star Schema
	Understanding When to Denormalize the Data
	Making a User-Friendly Model
	Summary

	Chapter 5: Creating Calculations with DAX
	What Is DAX?
	Implementing DAX Operators
	Working with Text Functions
	Using DAX Date and Time Functions
	Using Informational and Logical Functions
	Getting Data from Related Tables
	Using Math, Trig, and Statistical Functions
	Tips for Creating Calculations in Power BI
	Summary

	Chapter 6: Creating Measures with DAX
	Measures vs. Attributes
	Creating Common Aggregates
	Mastering Data Context
	Altering the Query Context
	Using Filter Functions
	Using Variables in DAX
	Summary

	Chapter 7: Incorporating Time Intelligence
	Date-Based Analysis
	Creating a Date Table
	Time Period–Based Evaluations
	Shifting the Date Context
	Using Single Date Functions
	Creating Semi-additive Measures
	Summary

	Chapter 8: Creating Reports with Power BI Desktop
	Creating Tables and Matrices
	Constructing Bar, Column, and Pie Charts
	Building Line and Scatter Charts
	Creating Map-Based Visualizations
	Linking Visualizations in Power BI
	Drilling Through Visualizations
	Summary

	Chapter 9: Publishing Reports and Creating Dashboards in the Power BI Portal
	Creating a User-Friendly Model
	Publishing Power BI Desktop Files to the Power BI Service
	Adding Tiles to a Dashboard
	Sharing Dashboards
	Refreshing Data in Published Reports
	Summary

	Chapter 10: Introducing Power Pivot in Excel
	Setting Up the Power Pivot Environment
	Getting, Cleaning, and Shaping Data
	Creating Table Relationships
	Adding Calculations and Measures
	Incorporating Time-Based Analysis
	Summary

	Chapter 11: Data Analysis with Pivot Tables and Charts
	Pivot Table Fundamentals
	Slicing the Data
	Adding Visualizations to a Pivot Table
	Working with Pivot Charts
	Using Multiple Charts and Tables
	Using Cube Functions
	Summary

	Chapter 12: Creating a Complete Solution
	Use Case 1: Sales Quota Analysis
	Load the Data
	Create the Model
	Create Measures
	Create the Report

	Use Case 2: Reseller Sales Analysis
	Load the Data
	Create the Model
	Create Calculated Columns
	Create Measures
	Create a Dashboard

	Use Case 3: Sensor Analysis
	Load the Data

	Summary

	Chapter 13: Advanced Topics in Power Query
	Writing Queries with M
	Creating and Using Parameters
	Creating and Using Functions
	Summary

	Chapter 14: Advanced Topics in Power BI Desktop
	Using Custom Visuals
	Implementing Geospatial Analysis
	Implementing Row-Based Security
	Creating Templates and Content Packs
	Summary

	Chapter 15: Advanced Topics in Power BI Data Modeling
	Direct Queries
	Using Aggregation Tables
	Implementing Dataflows
	Summary

	Index

