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Foreword
Ever	since	we	started	the	Spark	project	at	Berkeley,	I’ve	been	excited	about	not
just	building	fast	parallel	systems,	but	helping	more	and	more	people	make	use
of	large-scale	computing.	This	is	why	I’m	very	happy	to	see	this	book,	written
by	four	experts	in	data	science,	on	advanced	analytics	with	Spark.	Sandy,	Uri,
Sean,	and	Josh	have	been	working	with	Spark	for	a	while,	and	have	put
together	a	great	collection	of	content	with	equal	parts	explanations	and
examples.

The	thing	I	like	most	about	this	book	is	its	focus	on	examples,	which	are	all
drawn	from	real	applications	on	real-world	data	sets.	It’s	hard	to	find	one,	let
alone	10,	examples	that	cover	big	data	and	that	you	can	run	on	your	laptop,	but
the	authors	have	managed	to	create	such	a	collection	and	set	everything	up	so
you	can	run	them	in	Spark.	Moreover,	the	authors	cover	not	just	the	core
algorithms,	but	the	intricacies	of	data	preparation	and	model	tuning	that	are
needed	to	really	get	good	results.	You	should	be	able	to	take	the	concepts	in
these	examples	and	directly	apply	them	to	your	own	problems.

Big	data	processing	is	undoubtedly	one	of	the	most	exciting	areas	in
computing	today,	and	remains	an	area	of	fast	evolution	and	introduction	of
new	ideas.	I	hope	that	this	book	helps	you	get	started	in	this	exciting	new	field.

Matei	Zaharia,	CTO	at	Databricks	and	Vice	President,	Apache	Spark



Preface
Sandy	Ryza

I	don’t	like	to	think	I	have	many	regrets,	but	it’s	hard	to	believe	anything	good
came	out	of	a	particular	lazy	moment	in	2011	when	I	was	looking	into	how	to
best	distribute	tough	discrete	optimization	problems	over	clusters	of
computers.	My	advisor	explained	this	newfangled	Apache	Spark	thing	he	had
heard	of,	and	I	basically	wrote	off	the	concept	as	too	good	to	be	true	and
promptly	got	back	to	writing	my	undergrad	thesis	in	MapReduce.	Since	then,
Spark	and	I	have	both	matured	a	bit,	but	only	one	of	us	has	seen	a	meteoric	rise
that’s	nearly	impossible	to	avoid	making	“ignite”	puns	about.	Cut	to	a	few
years	later,	and	it	has	become	crystal	clear	that	Spark	is	something	worth
paying	attention	to.

Spark’s	long	lineage	of	predecessors,	from	MPI	to	MapReduce,	makes	it
possible	to	write	programs	that	take	advantage	of	massive	resources	while
abstracting	away	the	nitty-gritty	details	of	distributed	systems.	As	much	as	data
processing	needs	have	motivated	the	development	of	these	frameworks,	in	a
way	the	field	of	big	data	has	become	so	related	to	these	frameworks	that	its
scope	is	defined	by	what	these	frameworks	can	handle.	Spark’s	promise	is	to
take	this	a	little	further	—	to	make	writing	distributed	programs	feel	like
writing	regular	programs.

Spark	is	great	at	giving	ETL	pipelines	huge	boosts	in	performance	and	easing
some	of	the	pain	that	feeds	the	MapReduce	programmer’s	daily	chant	of
despair	(“why?	whyyyyy?”)	to	the	Apache	Hadoop	gods.	But	the	exciting	thing
for	me	about	it	has	always	been	what	it	opens	up	for	complex	analytics.	With	a
paradigm	that	supports	iterative	algorithms	and	interactive	exploration,	Spark
is	finally	an	open	source	framework	that	allows	a	data	scientist	to	be
productive	with	large	data	sets.

I	think	the	best	way	to	teach	data	science	is	by	example.	To	that	end,	my
colleagues	and	I	have	put	together	a	book	of	applications,	trying	to	touch	on
the	interactions	between	the	most	common	algorithms,	data	sets,	and	design
patterns	in	large-scale	analytics.	This	book	isn’t	meant	to	be	read	cover	to



cover.	Page	to	a	chapter	that	looks	like	something	you’re	trying	to	accomplish,
or	that	simply	ignites	your	interest.



What’s	in	This	Book
The	first	chapter	will	place	Spark	within	the	wider	context	of	data	science	and
big	data	analytics.	After	that,	each	chapter	will	comprise	a	self-contained
analysis	using	Spark.	The	second	chapter	will	introduce	the	basics	of	data
processing	in	Spark	and	Scala	through	a	use	case	in	data	cleansing.	The	next
few	chapters	will	delve	into	the	meat	and	potatoes	of	machine	learning	with
Spark,	applying	some	of	the	most	common	algorithms	in	canonical
applications.	The	remaining	chapters	are	a	bit	more	of	a	grab	bag	and	apply
Spark	in	slightly	more	exotic	applications	—	for	example,	querying	Wikipedia
through	latent	semantic	relationships	in	the	text	or	analyzing	genomics	data.



The	Second	Edition
Since	the	first	edition,	Spark	has	experienced	a	major	version	upgrade	that
instated	an	entirely	new	core	API	and	sweeping	changes	in	subcomponents	like
MLlib	and	Spark	SQL.	In	the	second	edition,	we’ve	made	major	renovations	to
the	example	code	and	brought	the	materials	up	to	date	with	Spark’s	new	best
practices.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for
download	at	https://github.com/sryza/aas.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.
You	do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a
significant	portion	of	the	code.	For	example,	writing	a	program	that	uses
several	chunks	of	code	from	this	book	does	not	require	permission.	Selling	or
distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does	require
permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of
example	code	from	this	book	into	your	product’s	documentation	does	require
permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes
the	title,	author,	publisher,	and	ISBN.	For	example:	"Advanced	Analytics	with
Spark	by	Sandy	Ryza,	Uri	Laserson,	Sean	Owen,	and	Josh	Wills	(O’Reilly).
Copyright	2015	Sandy	Ryza,	Uri	Laserson,	Sean	Owen,	and	Josh	Wills,	978-1-
491-91276-8.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/sryza/aas
mailto:permissions@oreilly.com
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bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see
our	website	at	http://www.oreilly.com.
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Chapter	1.	Analyzing	Big	Data
Sandy	Ryza

[Data	applications]	are	like	sausages.	It	is	better	not	to	see	them	being	made.
Otto	von	Bismarck

Build	a	model	to	detect	credit	card	fraud	using	thousands	of	features	and
billions	of	transactions

Intelligently	recommend	millions	of	products	to	millions	of	users

Estimate	financial	risk	through	simulations	of	portfolios	that	include
millions	of	instruments

Easily	manipulate	data	from	thousands	of	human	genomes	to	detect
genetic	associations	with	disease

These	are	tasks	that	simply	could	not	have	been	accomplished	5	or	10	years
ago.	When	people	say	that	we	live	in	an	age	of	big	data	they	mean	that	we	have
tools	for	collecting,	storing,	and	processing	information	at	a	scale	previously
unheard	of.	Sitting	behind	these	capabilities	is	an	ecosystem	of	open	source
software	that	can	leverage	clusters	of	commodity	computers	to	chug	through
massive	amounts	of	data.	Distributed	systems	like	Apache	Hadoop	have	found
their	way	into	the	mainstream	and	have	seen	widespread	deployment	at
organizations	in	nearly	every	field.

But	just	as	a	chisel	and	a	block	of	stone	do	not	make	a	statue,	there	is	a	gap
between	having	access	to	these	tools	and	all	this	data	and	doing	something
useful	with	it.	This	is	where	data	science	comes	in.	Just	as	sculpture	is	the
practice	of	turning	tools	and	raw	material	into	something	relevant	to
nonsculptors,	data	science	is	the	practice	of	turning	tools	and	raw	data	into
something	that	non–data	scientists	might	care	about.

Often,	“doing	something	useful”	means	placing	a	schema	over	it	and	using
SQL	to	answer	questions	like	“Of	the	gazillion	users	who	made	it	to	the	third
page	in	our	registration	process,	how	many	are	over	25?”	The	field	of	how	to
structure	a	data	warehouse	and	organize	information	to	make	answering	these



kinds	of	questions	easy	is	a	rich	one,	but	we	will	mostly	avoid	its	intricacies	in
this	book.

Sometimes,	“doing	something	useful”	takes	a	little	extra.	SQL	still	may	be	core
to	the	approach,	but	in	order	to	work	around	idiosyncrasies	in	the	data	or
perform	complex	analysis,	we	need	a	programming	paradigm	that’s	a	little	bit
more	flexible	and	closer	to	the	ground,	and	with	richer	functionality	in	areas
like	machine	learning	and	statistics.	These	are	the	kinds	of	analyses	we	are
going	to	talk	about	in	this	book.

For	a	long	time,	open	source	frameworks	like	R,	the	PyData	stack,	and	Octave
have	made	rapid	analysis	and	model	building	viable	over	small	data	sets.	With
fewer	than	10	lines	of	code,	we	can	throw	together	a	machine	learning	model
on	half	a	data	set	and	use	it	to	predict	labels	on	the	other	half.	With	a	little	more
effort,	we	can	impute	missing	data,	experiment	with	a	few	models	to	find	the
best	one,	or	use	the	results	of	a	model	as	inputs	to	fit	another.	What	should	an
equivalent	process	look	like	that	can	leverage	clusters	of	computers	to	achieve
the	same	outcomes	on	huge	data	sets?

The	right	approach	might	be	to	simply	extend	these	frameworks	to	run	on
multiple	machines	to	retain	their	programming	models	and	rewrite	their	guts
to	play	well	in	distributed	settings.	However,	the	challenges	of	distributed
computing	require	us	to	rethink	many	of	the	basic	assumptions	that	we	rely	on
in	single-node	systems.	For	example,	because	data	must	be	partitioned	across
many	nodes	on	a	cluster,	algorithms	that	have	wide	data	dependencies	will
suffer	from	the	fact	that	network	transfer	rates	are	orders	of	magnitude	slower
than	memory	accesses.	As	the	number	of	machines	working	on	a	problem
increases,	the	probability	of	a	failure	increases.	These	facts	require	a
programming	paradigm	that	is	sensitive	to	the	characteristics	of	the	underlying
system:	one	that	discourages	poor	choices	and	makes	it	easy	to	write	code	that
will	execute	in	a	highly	parallel	manner.

Of	course,	single-machine	tools	like	PyData	and	R	that	have	come	to	recent
prominence	in	the	software	community	are	not	the	only	tools	used	for	data
analysis.	Scientific	fields	like	genomics	that	deal	with	large	data	sets	have	been
leveraging	parallel	computing	frameworks	for	decades.	Most	people
processing	data	in	these	fields	today	are	familiar	with	a	cluster-computing
environment	called	HPC	(high-performance	computing).	Where	the	difficulties



with	PyData	and	R	lie	in	their	inability	to	scale,	the	difficulties	with	HPC	lie	in
its	relatively	low	level	of	abstraction	and	difficulty	of	use.	For	example,	to
process	a	large	file	full	of	DNA-sequencing	reads	in	parallel,	we	must
manually	split	it	up	into	smaller	files	and	submit	a	job	for	each	of	those	files	to
the	cluster	scheduler.	If	some	of	these	fail,	the	user	must	detect	the	failure	and
take	care	of	manually	resubmitting	them.	If	the	analysis	requires	all-to-all
operations	like	sorting	the	entire	data	set,	the	large	data	set	must	be	streamed
through	a	single	node,	or	the	scientist	must	resort	to	lower-level	distributed
frameworks	like	MPI,	which	are	difficult	to	program	without	extensive
knowledge	of	C	and	distributed/networked	systems.

Tools	written	for	HPC	environments	often	fail	to	decouple	the	in-memory	data
models	from	the	lower-level	storage	models.	For	example,	many	tools	only
know	how	to	read	data	from	a	POSIX	filesystem	in	a	single	stream,	making	it
difficult	to	make	tools	naturally	parallelize,	or	to	use	other	storage	backends,
like	databases.	Recent	systems	in	the	Hadoop	ecosystem	provide	abstractions
that	allow	users	to	treat	a	cluster	of	computers	more	like	a	single	computer	—
to	automatically	split	up	files	and	distribute	storage	over	many	machines,
divide	work	into	smaller	tasks	and	execute	them	in	a	distributed	manner,	and
recover	from	failures.	The	Hadoop	ecosystem	can	automate	a	lot	of	the	hassle
of	working	with	large	data	sets,	and	is	far	cheaper	than	HPC.



The	Challenges	of	Data	Science
A	few	hard	truths	come	up	so	often	in	the	practice	of	data	science	that
evangelizing	these	truths	has	become	a	large	role	of	the	data	science	team	at
Cloudera.	For	a	system	that	seeks	to	enable	complex	analytics	on	huge	data	to
be	successful,	it	needs	to	be	informed	by	—	or	at	least	not	conflict	with	—
these	truths.

First,	the	vast	majority	of	work	that	goes	into	conducting	successful	analyses
lies	in	preprocessing	data.	Data	is	messy,	and	cleansing,	munging,	fusing,
mushing,	and	many	other	verbs	are	prerequisites	to	doing	anything	useful	with
it.	Large	data	sets	in	particular,	because	they	are	not	amenable	to	direct
examination	by	humans,	can	require	computational	methods	to	even	discover
what	preprocessing	steps	are	required.	Even	when	it	comes	time	to	optimize
model	performance,	a	typical	data	pipeline	requires	spending	far	more	time	in
feature	engineering	and	selection	than	in	choosing	and	writing	algorithms.

For	example,	when	building	a	model	that	attempts	to	detect	fraudulent
purchases	on	a	website,	the	data	scientist	must	choose	from	a	wide	variety	of
potential	features:	fields	that	users	are	required	to	fill	out,	IP	location	info,
login	times,	and	click	logs	as	users	navigate	the	site.	Each	of	these	comes	with
its	own	challenges	when	converting	to	vectors	fit	for	machine	learning
algorithms.	A	system	needs	to	support	more	flexible	transformations	than
turning	a	2D	array	of	doubles	into	a	mathematical	model.

Second,	iteration	is	a	fundamental	part	of	data	science.	Modeling	and	analysis
typically	require	multiple	passes	over	the	same	data.	One	aspect	of	this	lies
within	machine	learning	algorithms	and	statistical	procedures.	Popular
optimization	procedures	like	stochastic	gradient	descent	and	expectation
maximization	involve	repeated	scans	over	their	inputs	to	reach	convergence.
Iteration	also	matters	within	the	data	scientist’s	own	workflow.	When	data
scientists	are	initially	investigating	and	trying	to	get	a	feel	for	a	data	set,
usually	the	results	of	a	query	inform	the	next	query	that	should	run.	When
building	models,	data	scientists	do	not	try	to	get	it	right	in	one	try.	Choosing
the	right	features,	picking	the	right	algorithms,	running	the	right	significance
tests,	and	finding	the	right	hyperparameters	all	require	experimentation.	A



framework	that	requires	reading	the	same	data	set	from	disk	each	time	it	is
accessed	adds	delay	that	can	slow	down	the	process	of	exploration	and	limit	the
number	of	things	we	get	to	try.

Third,	the	task	isn’t	over	when	a	well-performing	model	has	been	built.	If	the
point	of	data	science	is	to	make	data	useful	to	non–data	scientists,	then	a	model
stored	as	a	list	of	regression	weights	in	a	text	file	on	the	data	scientist’s
computer	has	not	really	accomplished	this	goal.	Uses	of	data	recommendation
engines	and	real-time	fraud	detection	systems	culminate	in	data	applications.	In
these,	models	become	part	of	a	production	service	and	may	need	to	be	rebuilt
periodically	or	even	in	real	time.

For	these	situations,	it	is	helpful	to	make	a	distinction	between	analytics	in	the
lab	and	analytics	in	the	factory.	In	the	lab,	data	scientists	engage	in	exploratory
analytics.	They	try	to	understand	the	nature	of	the	data	they	are	working	with.
They	visualize	it	and	test	wild	theories.	They	experiment	with	different	classes
of	features	and	auxiliary	sources	they	can	use	to	augment	it.	They	cast	a	wide
net	of	algorithms	in	the	hopes	that	one	or	two	will	work.	In	the	factory,	in
building	a	data	application,	data	scientists	engage	in	operational	analytics.
They	package	their	models	into	services	that	can	inform	real-world	decisions.
They	track	their	models’	performance	over	time	and	obsess	about	how	they
can	make	small	tweaks	to	squeeze	out	another	percentage	point	of	accuracy.
They	care	about	SLAs	and	uptime.	Historically,	exploratory	analytics	typically
occurs	in	languages	like	R,	and	when	it	comes	time	to	build	production
applications,	the	data	pipelines	are	rewritten	entirely	in	Java	or	C++.

Of	course,	everybody	could	save	time	if	the	original	modeling	code	could	be
actually	used	in	the	app	for	which	it	is	written,	but	languages	like	R	are	slow
and	lack	integration	with	most	planes	of	the	production	infrastructure	stack,
and	languages	like	Java	and	C++	are	just	poor	tools	for	exploratory	analytics.
They	lack	read-evaluate-print	loop	(REPL)	environments	to	play	with	data
interactively	and	require	large	amounts	of	code	to	express	simple
transformations.	A	framework	that	makes	modeling	easy	but	is	also	a	good	fit
for	production	systems	is	a	huge	win.



Introducing	Apache	Spark
Enter	Apache	Spark,	an	open	source	framework	that	combines	an	engine	for
distributing	programs	across	clusters	of	machines	with	an	elegant	model	for
writing	programs	atop	it.	Spark,	which	originated	at	the	UC	Berkeley	AMPLab
and	has	since	been	contributed	to	the	Apache	Software	Foundation,	is	arguably
the	first	open	source	software	that	makes	distributed	programming	truly
accessible	to	data	scientists.

One	illuminating	way	to	understand	Spark	is	in	terms	of	its	advances	over	its
predecessor,	Apache	Hadoop’s	MapReduce.	MapReduce	revolutionized
computation	over	huge	data	sets	by	offering	a	simple	model	for	writing
programs	that	could	execute	in	parallel	across	hundreds	to	thousands	of
machines.	The	MapReduce	engine	achieves	near	linear	scalability	—	as	the
data	size	increases,	we	can	throw	more	computers	at	it	and	see	jobs	complete
in	the	same	amount	of	time	—	and	is	resilient	to	the	fact	that	failures	that	occur
rarely	on	a	single	machine	occur	all	the	time	on	clusters	of	thousands	of
machines.	It	breaks	up	work	into	small	tasks	and	can	gracefully	accommodate
task	failures	without	compromising	the	job	to	which	they	belong.

Spark	maintains	MapReduce’s	linear	scalability	and	fault	tolerance,	but	extends
it	in	three	important	ways.	First,	rather	than	relying	on	a	rigid	map-then-reduce
format,	its	engine	can	execute	a	more	general	directed	acyclic	graph	(DAG)	of
operators.	This	means	that	in	situations	where	MapReduce	must	write	out
intermediate	results	to	the	distributed	filesystem,	Spark	can	pass	them	directly
to	the	next	step	in	the	pipeline.	In	this	way,	it	is	similar	to	Dryad,	a	descendant
of	MapReduce	that	originated	at	Microsoft	Research.	Second,	it	complements
this	capability	with	a	rich	set	of	transformations	that	enable	users	to	express
computation	more	naturally.	It	has	a	strong	developer	focus	and	streamlined
API	that	can	represent	complex	pipelines	in	a	few	lines	of	code.

Third,	Spark	extends	its	predecessors	with	in-memory	processing.	Its	Dataset
and	DataFrame	abstractions	enable	developers	to	materialize	any	point	in	a
processing	pipeline	into	memory	across	the	cluster,	meaning	that	future	steps
that	want	to	deal	with	the	same	data	set	need	not	recompute	it	or	reload	it	from
disk.	This	capability	opens	up	use	cases	that	distributed	processing	engines
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could	not	previously	approach.	Spark	is	well	suited	for	highly	iterative
algorithms	that	require	multiple	passes	over	a	data	set,	as	well	as	reactive
applications	that	quickly	respond	to	user	queries	by	scanning	large	in-memory
data	sets.

Perhaps	most	importantly,	Spark	fits	well	with	the	aforementioned	hard	truths
of	data	science,	acknowledging	that	the	biggest	bottleneck	in	building	data
applications	is	not	CPU,	disk,	or	network,	but	analyst	productivity.	It	perhaps
cannot	be	overstated	how	much	collapsing	the	full	pipeline,	from
preprocessing	to	model	evaluation,	into	a	single	programming	environment
can	speed	up	development.	By	packaging	an	expressive	programming	model
with	a	set	of	analytic	libraries	under	a	REPL,	Spark	avoids	the	roundtrips	to
IDEs	required	by	frameworks	like	MapReduce	and	the	challenges	of
subsampling	and	moving	data	back	and	forth	from	the	Hadoop	distributed	file
system	(HDFS)	required	by	frameworks	like	R.	The	more	quickly	analysts	can
experiment	with	their	data,	the	higher	likelihood	they	have	of	doing	something
useful	with	it.

With	respect	to	the	pertinence	of	munging	and	ETL,	Spark	strives	to	be
something	closer	to	the	Python	of	big	data	than	the	MATLAB	of	big	data.	As	a
general-purpose	computation	engine,	its	core	APIs	provide	a	strong
foundation	for	data	transformation	independent	of	any	functionality	in
statistics,	machine	learning,	or	matrix	algebra.	Its	Scala	and	Python	APIs	allow
programming	in	expressive	general-purpose	languages,	as	well	as	access	to
existing	libraries.

Spark’s	in-memory	caching	makes	it	ideal	for	iteration	both	at	the	micro-	and
macrolevel.	Machine	learning	algorithms	that	make	multiple	passes	over	their
training	set	can	cache	it	in	memory.	When	exploring	and	getting	a	feel	for	a
data	set,	data	scientists	can	keep	it	in	memory	while	they	run	queries,	and	easily
cache	transformed	versions	of	it	as	well	without	suffering	a	trip	to	disk.

Last,	Spark	spans	the	gap	between	systems	designed	for	exploratory	analytics
and	systems	designed	for	operational	analytics.	It	is	often	quoted	that	a	data
scientist	is	someone	who	is	better	at	engineering	than	most	statisticians,	and
better	at	statistics	than	most	engineers.	At	the	very	least,	Spark	is	better	at	being
an	operational	system	than	most	exploratory	systems	and	better	for	data
exploration	than	the	technologies	commonly	used	in	operational	systems.	It	is



built	for	performance	and	reliability	from	the	ground	up.	Sitting	atop	the	JVM,
it	can	take	advantage	of	many	of	the	operational	and	debugging	tools	built	for
the	Java	stack.

Spark	boasts	strong	integration	with	the	variety	of	tools	in	the	Hadoop
ecosystem.	It	can	read	and	write	data	in	all	of	the	data	formats	supported	by
MapReduce,	allowing	it	to	interact	with	formats	commonly	used	to	store	data
on	Hadoop,	like	Apache	Avro	and	Apache	Parquet	(and	good	old	CSV).	It	can
read	from	and	write	to	NoSQL	databases	like	Apache	HBase	and	Apache
Cassandra.	Its	stream-processing	library,	Spark	Streaming,	can	ingest	data
continuously	from	systems	like	Apache	Flume	and	Apache	Kafka.	Its	SQL
library,	SparkSQL,	can	interact	with	the	Apache	Hive	Metastore,	and	the	Hive
on	Spark	initiative	enabled	Spark	to	be	used	as	an	underlying	execution	engine
for	Hive,	as	an	alternative	to	MapReduce.	It	can	run	inside	YARN,	Hadoop’s
scheduler	and	resource	manager,	allowing	it	to	share	cluster	resources
dynamically	and	to	be	managed	with	the	same	policies	as	other	processing
engines,	like	MapReduce	and	Apache	Impala.



About	This	Book
The	rest	of	this	book	is	not	going	to	be	about	Spark’s	merits	and
disadvantages.	There	are	a	few	other	things	that	it	will	not	be	about	either.	It
will	introduce	the	Spark	programming	model	and	Scala	basics,	but	it	will	not
attempt	to	be	a	Spark	reference	or	provide	a	comprehensive	guide	to	all	its
nooks	and	crannies.	It	will	not	try	to	be	a	machine	learning,	statistics,	or	linear
algebra	reference,	although	many	of	the	chapters	will	provide	some
background	on	these	before	using	them.

Instead,	it	will	try	to	help	the	reader	get	a	feel	for	what	it’s	like	to	use	Spark	for
complex	analytics	on	large	data	sets.	It	will	cover	the	entire	pipeline:	not	just
building	and	evaluating	models,	but	also	cleansing,	preprocessing,	and
exploring	data,	with	attention	paid	to	turning	results	into	production
applications.	We	believe	that	the	best	way	to	teach	this	is	by	example,	so	after	a
quick	chapter	describing	Spark	and	its	ecosystem,	the	rest	of	the	chapters	will
be	self-contained	illustrations	of	what	it	looks	like	to	use	Spark	for	analyzing
data	from	different	domains.

When	possible,	we	will	attempt	not	to	just	provide	a	“solution,”	but	to
demonstrate	the	full	data	science	workflow,	with	all	of	its	iterations,	dead	ends,
and	restarts.	This	book	will	be	useful	for	getting	more	comfortable	with	Scala,
Spark,	and	machine	learning	and	data	analysis.	However,	these	are	in	service
of	a	larger	goal,	and	we	hope	that	most	of	all,	this	book	will	teach	you	how	to
approach	tasks	like	those	described	at	the	beginning	of	this	chapter.	Each
chapter,	in	about	20	measly	pages,	will	try	to	get	as	close	as	possible	to
demonstrating	how	to	build	one	of	these	pieces	of	data	applications.



The	Second	Edition
The	years	2015	and	2016	saw	seismic	changes	in	Spark,	culminating	in	the
release	of	Spark	2.0	in	July	of	2016.	The	most	salient	of	these	changes	are	the
modifications	to	Spark’s	core	API.	In	versions	prior	to	Spark	2.0,	Spark’s	API
centered	around	Resilient	Distributed	Datasets	(RDDs),	which	are	lazily
instantiated	collections	of	objects,	partitioned	across	a	cluster	of	computers.

Although	RDDs	enabled	a	powerful	and	expressive	API,	they	suffered	two
main	problems.	First,	they	didn’t	lend	themselves	well	to	performant,	stable
execution.	By	relying	on	Java	and	Python	objects,	RDDs	used	memory
inefficiently	and	exposed	Spark	programs	to	long	garbage-collection	pauses.
They	also	tied	the	execution	plan	into	the	API,	which	put	a	heavy	burden	on	the
user	to	optimize	the	execution	of	their	program.	For	example,	where	a
traditional	RDBMS	might	be	able	to	pick	the	best	join	strategy	based	on	the
size	of	the	tables	being	joined,	Spark	required	users	to	make	this	choice	on
their	own.	Second,	Spark’s	API	ignored	the	fact	that	data	often	fits	into	a
structured	relational	form,	and	when	it	does,	an	API	can	supply	primitives	that
makes	the	data	much	easier	to	manipulate,	such	as	by	allowing	users	to	refer	to
column	names	instead	of	ordinal	positions	in	a	tuple.

Spark	2.0	addressed	these	problems	by	replacing	RDDs	with	Datasets	and
DataFrames.	Datasets	are	similar	to	RDDs	but	map	the	objects	they	represent
to	encoders,	which	enable	a	much	more	efficient	in-memory	representation.
This	means	that	Spark	programs	execute	faster,	use	less	memory,	and	run
more	predictably.	Spark	also	places	an	optimizer	between	data	sets	and	their
execution	plan,	which	means	that	it	can	make	more	intelligent	decisions	about
how	to	execute	them.	DataFrame	is	a	subclass	of	Dataset	that	is	specialized	to
model	relational	data	(i.e.,	data	with	rows	and	fixed	sets	of	columns).	By
understanding	the	notion	of	a	column,	Spark	can	offer	a	cleaner,	expressive
API,	as	well	as	enable	a	number	of	performance	optimizations.	For	example,	if
Spark	knows	that	only	a	subset	of	the	columns	are	needed	to	produce	a	result,	it
can	avoid	materializing	those	columns	into	memory.	And	many
transformations	that	previously	needed	to	be	expressed	as	user-defined
functions	(UDFs)	are	now	expressible	directly	in	the	API.	This	is	especially
advantageous	when	using	Python,	because	Spark’s	internal	machinery	can



execute	transformations	much	faster	than	functions	defined	in	Python.
DataFrames	also	offer	interoperability	with	Spark	SQL,	meaning	that	users	can
write	a	SQL	query	that	returns	a	data	frame	and	then	use	that	DataFrame
programmatically	in	the	Spark-supported	language	of	their	choice.	Although
the	new	API	looks	very	similar	to	the	old	API,	enough	details	have	changed
that	nearly	all	Spark	programs	need	to	be	updated.

In	addition	to	the	code	API	changes,	Spark	2.0	saw	big	changes	to	the	APIs
used	for	machine	learning	and	statistical	analysis.	In	prior	versions,	each
machine	learning	algorithm	had	its	own	API.	Users	who	wanted	to	prepare	data
for	input	into	algorithms	or	to	feed	the	output	of	one	algorithm	into	another
needed	to	write	their	own	custom	orchestration	code.	Spark	2.0	contains	the
Spark	ML	API,	which	introduces	a	framework	for	composing	pipelines	of
machine	learning	algorithms	and	feature	transformation	steps.	The	API,
inspired	by	Python’s	popular	Scikit-Learn	API,	revolves	around	estimators	and
transformers,	objects	that	learn	parameters	from	the	data	and	then	use	those
parameters	to	transform	data.	The	Spark	ML	API	is	heavily	integrated	with	the
DataFrames	API,	which	makes	it	easy	to	train	machine	learning	models	on
relational	data.	For	example,	users	can	refer	to	features	by	name	instead	of	by
ordinal	position	in	a	feature	vector.

Taken	together,	all	these	changes	to	Spark	have	rendered	much	of	the	first
edition	obsolete.	This	second	edition	updates	all	of	the	chapters	to	use	the	new
Spark	APIs	when	possible.	Additionally,	we’ve	cut	some	bits	that	are	no	longer
relevant.	For	example,	we’ve	removed	a	full	appendix	that	dealt	with	some	of
the	intricacies	of	the	API,	in	part	because	Spark	now	handles	these	situations
intelligently	without	user	intervention.	With	Spark	in	a	new	era	of	maturity	and
stability,	we	hope	that	these	changes	will	preserve	the	book	as	an	useful
resource	on	analytics	with	Spark	for	years	to	come.



Chapter	2.	Introduction	to	Data
Analysis	with	Scala	and	Spark
Josh	Wills

If	you	are	immune	to	boredom,	there	is	literally	nothing	you	cannot
accomplish.
David	Foster	Wallace

Data	cleansing	is	the	first	step	in	any	data	science	project,	and	often	the	most
important.	Many	clever	analyses	have	been	undone	because	the	data	analyzed
had	fundamental	quality	problems	or	underlying	artifacts	that	biased	the
analysis	or	led	the	data	scientist	to	see	things	that	weren’t	really	there.

Despite	its	importance,	most	textbooks	and	classes	on	data	science	either	don’t
cover	data	cleansing	or	only	give	it	a	passing	mention.	The	explanation	for	this
is	simple:	cleansing	data	is	really	boring.	It	is	the	tedious,	dull	work	that	you
have	to	do	before	you	can	get	to	the	really	cool	machine	learning	algorithm
that	you’ve	been	dying	to	apply	to	a	new	problem.	Many	new	data	scientists
tend	to	rush	past	it	to	get	their	data	into	a	minimally	acceptable	state,	only	to
discover	that	the	data	has	major	quality	issues	after	they	apply	their	(potentially
computationally	intensive)	algorithm	and	end	up	with	a	nonsense	answer	as
output.

Everyone	has	heard	the	saying	“garbage	in,	garbage	out.”	But	there	is
something	even	more	pernicious:	getting	reasonable-looking	answers	from	a
reasonable-looking	data	set	that	has	major	(but	not	obvious	at	first	glance)
quality	issues.	Drawing	significant	conclusions	based	on	this	kind	of	mistake	is
the	sort	of	thing	that	gets	data	scientists	fired.

One	of	the	most	important	talents	that	you	can	develop	as	a	data	scientist	is	the
ability	to	discover	interesting	and	worthwhile	problems	in	every	phase	of	the
data	analytics	lifecycle.	The	more	skill	and	brainpower	that	you	can	apply
early	on	in	an	analysis	project,	the	stronger	your	confidence	will	be	in	your
final	product.

Of	course,	it’s	easy	to	say	all	that	—	it’s	the	data	science	equivalent	of	telling



children	to	eat	their	vegetables	—	but	it’s	much	more	fun	to	play	with	a	new
tool	like	Spark	that	lets	us	build	fancy	machine	learning	algorithms,	develop
streaming	data	processing	engines,	and	analyze	web-scale	graphs.	And	what
better	way	to	introduce	you	to	working	with	data	using	Spark	and	Scala	than	a
data	cleansing	exercise?



Scala	for	Data	Scientists
Most	data	scientists	have	a	favorite	tool,	like	R	or	Python,	for	interactive	data
munging	and	analysis.	Although	they’re	willing	to	work	in	other	environments
when	they	have	to,	data	scientists	tend	to	get	very	attached	to	their	favorite	tool,
and	are	always	looking	to	find	a	way	to	use	it.	Introducing	a	data	scientist	to	a
new	tool	that	has	a	new	syntax	and	set	of	patterns	to	learn	can	be	challenging
under	the	best	of	circumstances.

There	are	libraries	and	wrappers	for	Spark	that	allow	you	to	use	it	from	R	or
Python.	The	Python	wrapper,	which	is	called	PySpark,	is	actually	quite	good;
we’ll	cover	some	examples	that	involve	using	it	in	Chapter	11.	But	the	vast
majority	of	our	examples	will	be	written	in	Scala,	because	we	think	that
learning	how	to	work	with	Spark	in	the	same	language	in	which	the	underlying
framework	is	written	has	a	number	of	advantages,	such	as	the	following:

It	reduces	performance	overhead.
Whenever	we’re	running	an	algorithm	in	R	or	Python	on	top	of	a	JVM-
based	language	like	Scala,	we	have	to	do	some	work	to	pass	code	and	data
across	the	different	environments,	and	oftentimes,	things	can	get	lost	in
translation.	When	you’re	writing	data	analysis	algorithms	in	Spark	with
the	Scala	API,	you	can	be	far	more	confident	that	your	program	will	run
as	intended.

It	gives	you	access	to	the	latest	and	greatest.
All	of	Spark’s	machine	learning,	stream	processing,	and	graph	analytics
libraries	are	written	in	Scala,	and	the	Python	and	R	bindings	tend	to	get
support	this	new	functionality	much	later.	If	you	want	to	take	advantage	of
all	the	features	that	Spark	has	to	offer	(without	waiting	for	a	port	to	other
language	bindings),	you	will	need	to	learn	at	least	a	little	bit	of	Scala;	and
if	you	want	to	be	able	to	extend	those	functions	to	solve	new	problems
you	encounter,	you’ll	need	to	learn	a	little	bit	more.

It	will	help	you	understand	the	Spark	philosophy.
Even	when	you’re	using	Spark	from	Python	or	R,	the	APIs	reflect	the
underlying	computation	philosophy	that	Spark	inherited	from	the



language	in	which	it	was	developed	—	Scala.	If	you	know	how	to	use
Spark	in	Scala	—	even	if	you	primarily	use	it	from	other	languages	—
you’ll	have	a	better	understanding	of	the	system	and	will	be	in	a	better
position	to	“think	in	Spark.”

There	is	another	advantage	of	learning	how	to	use	Spark	from	Scala,	but	it’s	a
bit	more	difficult	to	explain	because	of	how	different	Spark	is	from	any	other
data	analysis	tool.	If	you’ve	ever	analyzed	data	pulled	from	a	database	in	R	or
Python,	you’re	used	to	working	with	languages	like	SQL	to	retrieve	the
information	you	want,	and	then	switching	into	R	or	Python	to	manipulate	and
visualize	that	data.	You’re	used	to	using	one	language	(SQL)	for	retrieving	and
manipulating	lots	of	data	stored	in	a	remote	cluster,	and	another	language
(Python/R)	for	manipulating	and	visualizing	information	stored	on	your	own
machine.	And	if	you	wanted	to	move	some	of	your	computation	into	the
database	engine	via	a	SQL	UDF,	you	needed	to	move	to	yet	another
programming	environment	like	C++	or	Java	and	learn	a	bit	about	the	internals
of	the	database.	If	you’ve	been	doing	this	for	long	enough,	you	probably	don’t
even	think	about	it	anymore.

With	Spark	and	Scala,	the	experience	is	different,	because	you	have	the	option
of	using	the	same	language	for	everything.	You’re	writing	Scala	to	retrieve
data	from	the	cluster	via	Spark.	You’re	writing	Scala	to	manipulate	that	data
locally	on	your	machine.	And	then	—	and	this	is	the	really	neat	part	—	you	can
send	Scala	code	into	the	cluster	so	that	you	can	perform	the	exact	same
transformations	that	you	performed	locally	on	data	that	is	still	stored	in	the
cluster.	Even	when	you’re	working	in	a	higher-level	language	like	Spark	SQL,
you	can	write	your	UDFs	inline,	register	them	with	the	Spark	SQL	engine,	and
use	them	right	away	—	no	context	switching	required.

It’s	difficult	to	express	how	transformative	it	is	to	do	all	of	your	data	munging
and	analysis	in	a	single	environment,	regardless	of	where	the	data	itself	is
stored	and	processed.	It’s	the	sort	of	thing	that	you	have	to	experience	to
understand,	and	we	wanted	to	be	sure	that	our	examples	captured	some	of	that
magic	feeling	we	experienced	when	we	first	started	using	Spark.



The	Spark	Programming	Model
Spark	programming	starts	with	a	data	set,	usually	residing	in	some	form	of
distributed,	persistent	storage	like	HDFS.	Writing	a	Spark	program	typically
consists	of	a	few	related	steps:

1.	 Define	a	set	of	transformations	on	the	input	data	set.

2.	 Invoke	actions	that	output	the	transformed	data	sets	to	persistent
storage	or	return	results	to	the	driver ’s	local	memory.

3.	 Run	local	computations	that	operate	on	the	results	computed	in	a
distributed	fashion.	These	can	help	you	decide	what	transformations
and	actions	to	undertake	next.

As	Spark	has	matured	from	version	1.2	to	version	2.1,	the	number	and	quality
of	tools	available	for	performing	these	steps	have	increased.	You	can	mix	and
match	complex	SQL	queries,	machine	learning	libraries,	and	custom	code	as
you	carry	out	your	analysis,	and	you	can	leverage	all	of	the	higher-level
abstractions	that	the	Spark	community	has	developed	over	the	past	few	years	in
order	to	answer	more	questions	in	less	time.	At	the	same	time,	it’s	important	to
remember	that	all	of	these	higher-level	abstractions	still	rely	on	the	same
philosophy	that	has	been	present	in	Spark	since	the	very	beginning:	the
interplay	between	storage	and	execution.	Spark	pairs	these	abstractions	in	an
elegant	way	that	essentially	allows	any	intermediate	step	in	a	data	processing
pipeline	to	be	cached	in	memory	for	later	use.	Understanding	these	principles
will	help	you	make	better	use	of	Spark	for	data	analysis.



Record	Linkage
The	problem	that	we’re	going	to	study	in	this	chapter	goes	by	a	lot	of	different
names	in	the	literature	and	in	practice:	entity	resolution,	record	deduplication,
merge-and-purge,	and	list	washing.	Ironically,	this	makes	it	difficult	to	find	all
of	the	research	papers	on	this	topic	in	order	to	get	a	good	overview	of	solution
techniques;	we	need	a	data	scientist	to	deduplicate	the	references	to	this	data
cleansing	problem!	For	our	purposes	in	the	rest	of	this	chapter,	we’re	going	to
refer	to	this	problem	as	record	linkage.

The	general	structure	of	the	problem	is	something	like	this:	we	have	a	large
collection	of	records	from	one	or	more	source	systems,	and	it	is	likely	that
multiple	records	refer	to	the	same	underlying	entity,	such	as	a	customer,	a
patient,	or	the	location	of	a	business	or	an	event.	Each	entity	has	a	number	of
attributes,	such	as	a	name,	an	address,	or	a	birthday,	and	we	will	need	to	use
these	attributes	to	find	the	records	that	refer	to	the	same	entity.	Unfortunately,
the	values	of	these	attributes	aren’t	perfect:	values	might	have	different
formatting,	typos,	or	missing	information	that	means	that	a	simple	equality	test
on	the	values	of	the	attributes	will	cause	us	to	miss	a	significant	number	of
duplicate	records.	For	example,	let’s	compare	the	business	listings	shown	in
Table	2-1.

Table	2-1.	The	challenge	of	record	linkage

Name Address City State Phone

Josh’s	Coffee	Shop 1234	Sunset	Boulevard West	Hollywood CA (213)-555-1212

Josh	Coffee 1234	Sunset	Blvd	West Hollywood CA 555-1212

Coffee	Chain	#1234 1400	Sunset	Blvd	#2 Hollywood CA 206-555-1212

Coffee	Chain	Regional	Office 1400	Sunset	Blvd	Suite	2 Hollywood California 206-555-1212

The	first	two	entries	in	this	table	refer	to	the	same	small	coffee	shop,	even
though	a	data	entry	error	makes	it	look	as	if	they	are	in	two	different	cities
(West	Hollywood	and	Hollywood).	The	second	two	entries,	on	the	other	hand,
are	actually	referring	to	different	business	locations	of	the	same	chain	of



coffee	shops	that	happen	to	share	a	common	address:	one	of	the	entries	refers
to	an	actual	coffee	shop,	and	the	other	one	refers	to	a	local	corporate	office
location.	Both	of	the	entries	give	the	official	phone	number	of	corporate
headquarters	in	Seattle.

This	example	illustrates	everything	that	makes	record	linkage	so	difficult:	even
though	both	pairs	of	entries	look	similar	to	each	other,	the	criteria	that	we	use
to	make	the	duplicate/not-duplicate	decision	is	different	for	each	pair.	This	is
the	kind	of	distinction	that	is	easy	for	a	human	to	understand	and	identify	at	a
glance,	but	is	difficult	for	a	computer	to	learn.



Getting	Started:	The	Spark	Shell	and	SparkContext
We’re	going	to	use	a	sample	data	set	from	the	UC	Irvine	Machine	Learning
Repository,	which	is	a	fantastic	source	for	interesting	(and	free)	data	sets	for
research	and	education.	The	data	set	we’ll	analyze	was	curated	from	a	record
linkage	study	performed	at	a	German	hospital	in	2010,	and	it	contains	several
million	pairs	of	patient	records	that	were	matched	according	to	several
different	criteria,	such	as	the	patient’s	name	(first	and	last),	address,	and
birthday.	Each	matching	field	was	assigned	a	numerical	score	from	0.0	to	1.0
based	on	how	similar	the	strings	were,	and	the	data	was	then	hand-labeled	to
identify	which	pairs	represented	the	same	person	and	which	did	not.	The
underlying	values	of	the	fields	that	were	used	to	create	the	data	set	were
removed	to	protect	the	privacy	of	the	patients.	Numerical	identifiers,	the	match
scores	for	the	fields,	and	the	label	for	each	pair	(match	versus	nonmatch)	were
published	for	use	in	record	linkage	research.

From	the	shell,	let’s	pull	the	data	from	the	repository:

$	mkdir	linkage

$	cd	linkage/

$	curl	-L	-o	donation.zip	https://bit.ly/1Aoywaq

$	unzip	donation.zip

$	unzip	'block_*.zip'

If	you	have	a	Hadoop	cluster	handy,	you	can	create	a	directory	for	the	block
data	in	HDFS	and	copy	the	files	from	the	data	set	there:

$	hadoop	fs	-mkdir	linkage

$	hadoop	fs	-put	block_*.csv	linkage

The	examples	and	code	in	this	book	assume	you	have	Spark	2.1.0	available.
Releases	can	be	obtained	from	the	Spark	project	site.	Refer	to	the	Spark
documentation	for	instructions	on	setting	up	a	Spark	environment,	whether	on
a	cluster	or	simply	on	your	local	machine.

Now	we’re	ready	to	launch	the	spark-shell,	which	is	a	REPL	for	the	Scala
language	that	also	has	some	Spark-specific	extensions.	If	you’ve	never	seen	the
term	REPL	before,	you	can	think	of	it	as	something	similar	to	the	R
environment:	it’s	a	console	where	you	can	define	functions	and	manipulate	data

https://spark.apache.org/downloads.html
https://spark.apache.org/docs/latest/


in	the	Scala	programming	language.

If	you	have	a	Hadoop	cluster	that	runs	a	version	of	Hadoop	that	supports
YARN,	you	can	launch	the	Spark	jobs	on	the	cluster	by	using	the	value	of	yarn
for	the	Spark	master:

$	spark-shell	--master	yarn	--deploy-mode	client

However,	if	you’re	just	running	these	examples	on	your	personal	computer,
you	can	launch	a	local	Spark	cluster	by	specifying	local[N],	where	N	is	the
number	of	threads	to	run,	or	*	to	match	the	number	of	cores	available	on	your
machine.	For	example,	to	launch	a	local	cluster	that	uses	eight	threads	on	an
eight-core	machine:

$	spark-shell	--master	local[*]

The	examples	will	work	the	same	way	locally.	You	will	simply	pass	paths	to
local	files,	rather	than	paths	on	HDFS	beginning	with	hdfs://.	Note	that	you
will	still	need	to	cp	block_*.csv	into	your	chosen	local	directory	rather	than
use	the	directory	containing	files	you	unzipped	earlier,	because	it	contains	a
number	of	other	files	in	addition	to	the	.csv	data	files.

The	rest	of	the	examples	in	this	book	will	not	show	a	--master	argument	to
spark-shell,	but	you	will	typically	need	to	specify	this	argument	as
appropriate	for	your	environment.

You	may	need	to	specify	additional	arguments	to	make	the	Spark	shell	fully
utilize	your	resources.	For	example,	when	running	Spark	with	a	local	master,
you	can	use	--driver-memory	2g	to	let	the	single	local	process	use	2	GB	of
memory.	YARN	memory	configuration	is	more	complex,	and	relevant	options
like	--executor-memory	are	explained	in	the	Spark	on	YARN	documentation.

After	running	one	of	these	commands,	you	will	see	a	lot	of	log	messages	from
Spark	as	it	initializes	itself,	but	you	should	also	see	a	bit	of	ASCII	art,	followed
by	some	additional	log	messages	and	a	prompt:

Spark	context	Web	UI	available	at	http://10.0.1.39:4040

Spark	context	available	as	'sc'	(master	=	local[*],	app	id	=	...).

Spark	session	available	as	'spark'.

Welcome	to

https://bit.ly/1BVpP9J


						____														__

					/	__/__		___	_____/	/__

				_\	\/	_	\/	_	`/	__/		'_/

			/___/	.__/\_,_/_/	/_/\_\			version	2.1.0

						/_/

Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	Server	VM,	Java	1.8.0_60)

Type	in	expressions	to	have	them	evaluated.

Type	:help	for	more	information.

scala>

If	this	is	your	first	time	using	the	Spark	shell	(or	any	Scala	REPL,	for	that
matter),	you	should	run	the	:help	command	to	list	available	commands	in	the
shell.	:history	and	:h?	can	be	helpful	for	finding	the	names	of	variables	or
functions	that	you	wrote	during	a	session	but	can’t	seem	to	find	at	the	moment.
:paste	can	help	you	correctly	insert	code	from	the	clipboard	—	something
you	might	want	to	do	while	following	along	with	the	book	and	its
accompanying	source	code.

In	addition	to	the	note	about	:help,	the	Spark	log	messages	indicated	“Spark
context	available	as	sc.”	This	is	a	reference	to	the	SparkContext,	which
coordinates	the	execution	of	Spark	jobs	on	the	cluster.	Go	ahead	and	type	sc	at
the	command	line:

sc

...

res:	org.apache.spark.SparkContext	=

		org.apache.spark.SparkContext@DEADBEEF

The	REPL	will	print	the	string	form	of	the	object.	For	the	SparkContext	object,
this	is	simply	its	name	plus	the	hexadecimal	address	of	the	object	in	memory.
(DEADBEEF	is	a	placeholder;	the	exact	value	you	see	here	will	vary	from	run	to
run.)

It’s	good	that	the	sc	variable	exists,	but	what	exactly	do	we	do	with	it?
SparkContext	is	an	object,	so	it	has	methods	associated	with	it.	We	can	see	what
those	methods	are	in	the	Scala	REPL	by	typing	the	name	of	a	variable,
followed	by	a	period,	followed	by	tab:

sc.[\t]

...

!=																									hashCode

##																									isInstanceOf

+																										isLocal



->																									isStopped

==																									jars

accumulable																killExecutor

accumulableCollection						killExecutors

accumulator																listFiles

addFile																				listJars

addJar																					longAccumulator

...		(lots	of	other	methods)

getClass																			stop

getConf																				submitJob

getExecutorMemoryStatus				synchronized

getExecutorStorageStatus			textFile

getLocalProperty											toString

getPersistentRDDs										uiWebUrl

getPoolForName													union

getRDDStorageInfo										version

getSchedulingMode										wait

hadoopConfiguration								wholeTextFiles

hadoopFile																	→

The	SparkContext	has	a	long	list	of	methods,	but	the	ones	that	we’re	going	to
use	most	often	allow	us	to	create	Resilient	Distributed	Datasets,	or	RDDs.	An
RDD	is	Spark’s	fundamental	abstraction	for	representing	a	collection	of
objects	that	can	be	distributed	across	multiple	machines	in	a	cluster.	There	are
two	ways	to	create	an	RDD	in	Spark:

Using	the	SparkContext	to	create	an	RDD	from	an	external	data	source,
like	a	file	in	HDFS,	a	database	table	via	JDBC,	or	a	local	collection	of
objects	that	we	create	in	the	Spark	shell

Performing	a	transformation	on	one	or	more	existing	RDDs,	like
filtering	records,	aggregating	records	by	a	common	key,	or	joining
multiple	RDDs	together

RDDs	are	a	convenient	way	to	describe	the	computations	that	we	want	to
perform	on	our	data	as	a	sequence	of	small,	independent	steps.

RESILIENT	DISTRIBUTED	DATASETS

An	RDD	is	laid	out	across	the	cluster	of	machines	as	a	collection	of	partitions,	each	including	a
subset	of	the	data.	Partitions	define	the	unit	of	parallelism	in	Spark.	The	framework	processes	the
objects	within	a	partition	in	sequence,	and	processes	multiple	partitions	in	parallel.	One	of	the	simplest
ways	to	create	an	RDD	is	to	use	the	parallelize	method	on	SparkContext	with	a	local	collection	of
objects:

val	rdd	=	sc.parallelize(Array(1,	2,	2,	4),	4)

...

rdd:	org.apache.spark.rdd.RDD[Int]	=	...



The	first	argument	is	the	collection	of	objects	to	parallelize.	The	second	is	the	number	of	partitions.
When	the	time	comes	to	compute	the	objects	within	a	partition,	Spark	fetches	a	subset	of	the	collection
from	the	driver	process.

To	create	an	RDD	from	a	text	file	or	directory	of	text	files	residing	in	a	distributed	filesystem	like
HDFS,	we	can	pass	the	name	of	the	file	or	directory	to	the	textFile	method:

val	rdd2	=	sc.textFile("hdfs:///some/path.txt")

...

rdd2:	org.apache.spark.rdd.RDD[String]	=	...

When	you’re	running	Spark	in	local	mode,	the	textFile	method	can	access	paths	that	reside	on	the
local	filesystem.	If	Spark	is	given	a	directory	instead	of	an	individual	file,	it	will	consider	all	of	the
files	in	that	directory	as	part	of	the	given	RDD.	Finally,	note	that	no	actual	data	has	been	read	by
Spark	or	loaded	into	memory	yet,	either	on	our	client	machine	or	the	cluster.	When	the	time	comes	to
compute	the	objects	within	a	partition,	Spark	reads	a	section	(also	known	as	a	split)	of	the	input	file,
and	then	applies	any	subsequent	transformations	(filtering,	aggregation,	etc.)	that	we	defined	via	other
RDDs.

Our	record	linkage	data	is	stored	in	a	text	file,	with	one	observation	on	each
line.	We	will	use	the	textFile	method	on	SparkContext	to	get	a	reference	to
this	data	as	an	RDD:

val	rawblocks	=	sc.textFile("linkage")

...

rawblocks:	org.apache.spark.rdd.RDD[String]	=	...

There	are	a	few	things	happening	on	this	line	that	are	worth	going	over.	First,
we’re	declaring	a	new	variable	called	rawblocks.	As	we	can	see	from	the	shell,
the	rawblocks	variable	has	a	type	of	RDD[String],	even	though	we	never
specified	that	type	information	in	our	variable	declaration.	This	is	a	feature	of
the	Scala	programming	language	called	type	inference,	and	it	saves	us	a	lot	of
typing	when	we’re	working	with	the	language.	Whenever	possible,	Scala
figures	out	what	type	a	variable	has	based	on	its	context.	In	this	case,	Scala
looks	up	the	return	type	from	the	textFile	function	on	the	SparkContext
object,	sees	that	it	returns	an	RDD[String],	and	assigns	that	type	to	the
rawblocks	variable.

Whenever	we	create	a	new	variable	in	Scala,	we	must	preface	the	name	of	the
variable	with	either	val	or	var.	Variables	that	are	prefaced	with	val	are
immutable,	and	cannot	be	changed	to	refer	to	another	value	once	they	are
assigned,	whereas	variables	that	are	prefaced	with	var	can	be	changed	to	refer



to	different	objects	of	the	same	type.	Watch	what	happens	when	we	execute	the
following	code:

rawblocks	=	sc.textFile("linkage")

...

<console>:	error:	reassignment	to	val

var	varblocks	=	sc.textFile("linkage")

varblocks	=	sc.textFile("linkage")

Attempting	to	reassign	the	linkage	data	to	the	rawblocks	val	threw	an	error,
but	reassigning	the	varblocks	var	is	fine.	Within	the	Scala	REPL,	there	is	an
exception	to	the	reassignment	of	vals,	because	we	are	allowed	to	redeclare	the
same	immutable	variable,	like	the	following:

val	rawblocks	=	sc.textFile("linakge")

val	rawblocks	=	sc.textFile("linkage")

In	this	case,	no	error	is	thrown	on	the	second	declaration	of	rawblocks.	This
isn’t	typically	allowed	in	normal	Scala	code,	but	it’s	fine	to	do	in	the	shell,	and
we	will	make	extensive	use	of	this	feature	throughout	the	examples	in	the	book.

THE	REPL	AND	COMPILATION

In	addition	to	its	interactive	shell,	Spark	also	supports	compiled	applications.	We	typically
recommend	using	Apache	Maven	for	compiling	and	managing	dependencies.	The	GitHub	repository
included	with	this	book	holds	a	self-contained	Maven	project	in	the	simplesparkproject/	directory	to
help	you	get	started.

With	both	the	shell	and	compilation	as	options,	which	should	you	use	when	testing	and	building	a	data
pipeline?	It	is	often	useful	to	start	working	entirely	in	the	REPL.	This	enables	quick	prototyping,	faster
iteration,	and	less	lag	time	between	ideas	and	results.	However,	as	the	program	builds	in	size,
maintaining	a	monolithic	file	of	code	can	become	more	onerous,	and	Scala’s	interpretation	eats	up
more	time.	This	can	be	exacerbated	by	the	fact	that,	when	you’re	dealing	with	massive	data,	it	is	not
uncommon	for	an	attempted	operation	to	cause	a	Spark	application	to	crash	or	otherwise	render	a
SparkContext	unusable.	This	means	that	any	work	and	code	typed	in	so	far	becomes	lost.	At	this
point,	it	is	often	useful	to	take	a	hybrid	approach.	Keep	the	frontier	of	development	in	the	REPL	and
as	pieces	of	code	harden,	move	them	over	into	a	compiled	library.	You	can	make	the	compiled	JAR
available	to	spark-shell	by	passing	it	to	the	--jars	command-line	flag.	When	done	right,	the
compiled	JAR	only	needs	to	be	rebuilt	infrequently,	and	the	REPL	allows	for	fast	iteration	on	code
and	approaches	that	still	need	ironing	out.

What	about	referencing	external	Java	and	Scala	libraries?	To	compile	code	that	references	external
libraries,	you	need	to	specify	the	libraries	inside	the	project’s	Maven	configuration	(pom.xml).	To	run
code	that	accesses	external	libraries,	you	need	to	include	the	JARs	for	these	libraries	on	the	classpath
of	Spark’s	processes.	A	good	way	to	make	this	happen	is	to	use	Maven	to	package	a	JAR	that

https://maven.apache.org
http://bit.ly/2rnWGlI


includes	all	of	your	application’s	dependencies.	You	can	then	reference	this	JAR	when	starting	the
shell	by	using	the	--jars	property.	The	advantage	of	this	approach	is	that	the	dependencies	only	need
to	be	specified	once:	in	the	Maven	pom.xml.	Again,	the	simplesparkproject/	directory	in	the	GitHub
repository	shows	you	how	to	accomplish	this.

If	you	know	of	a	third-party	JAR	that	is	published	to	a	Maven	repository,	you	can	tell	the	spark-
shell	to	load	the	JAR	by	passing	its	Maven	coordinates	via	the	--packages	command-line	argument.
For	example,	to	load	the	Wisp	Visualization	Library	for	Scala	2.11,	you	would	pass	--packages
"com.quantifind:wisp_2.11:0.0.4"	to	the	spark-shell.	If	the	JAR	is	stored	in	a	repository	besides
Maven	Central,	you	can	tell	Spark	where	to	look	for	the	JAR	by	passing	the	repository	URL	to	the	-
-repositories	argument.	Both	the	--packages	and	--repositories	arguments	can	take	comma-
separated	arguments	if	you	need	to	load	from	multiple	packages	or	repositories.



Bringing	Data	from	the	Cluster	to	the	Client
RDDs	have	a	number	of	methods	that	allow	us	to	read	data	from	the	cluster
into	the	Scala	REPL	on	our	client	machine.	Perhaps	the	simplest	of	these	is
first,	which	returns	the	first	element	of	the	RDD	into	the	client:

rawblocks.first

...

res:	String	=	"id_1","id_2","cmp_fname_c1","cmp_fname_c2",...

The	first	method	can	be	useful	for	sanity	checking	a	data	set,	but	we’re
generally	interested	in	bringing	back	larger	samples	of	an	RDD	into	the	client
for	analysis.	When	we	know	that	an	RDD	only	contains	a	small	number	of
records,	we	can	use	the	collect	method	to	return	all	the	contents	of	an	RDD	to
the	client	as	an	array.	Because	we	don’t	know	how	big	the	linkage	data	set	is
just	yet,	we’ll	hold	off	on	doing	this	right	now.

We	can	strike	a	balance	between	first	and	collect	with	the	take	method,
which	allows	us	to	read	a	given	number	of	records	into	an	array	on	the	client.
Let’s	use	take	to	get	the	first	10	lines	from	the	linkage	data	set:

val	head	=	rawblocks.take(10)

...

head:	Array[String]	=	Array("id_1","id_2","cmp_fname_c1",...

head.length

...

res:	Int	=	10

ACTIONS

The	act	of	creating	an	RDD	does	not	cause	any	distributed	computation	to	take	place	on	the	cluster.
Rather,	RDDs	define	logical	data	sets	that	are	intermediate	steps	in	a	computation.	Distributed
computation	occurs	upon	invoking	an	action	on	an	RDD.	For	example,	the	count	action	returns	the
number	of	objects	in	an	RDD:

rdd.count()

14/09/10	17:36:09	INFO	SparkContext:	Starting	job:	count	...

14/09/10	17:36:09	INFO	SparkContext:	Job	finished:	count	...

res0:	Long	=	4

The	collect	action	returns	an	Array	with	all	the	objects	from	the	RDD.	This	Array	resides	in	local



memory,	not	on	the	cluster:

rdd.collect()

14/09/29	00:58:09	INFO	SparkContext:	Starting	job:	collect	...

14/09/29	00:58:09	INFO	SparkContext:	Job	finished:	collect	...

res2:	Array[(Int,	Int)]	=	Array((4,1),	(1,1),	(2,2))

Actions	need	not	only	return	results	to	the	local	process.	The	saveAsTextFile	action	saves	the
contents	of	an	RDD	to	persistent	storage,	such	as	HDFS:

rdd.saveAsTextFile("hdfs:///user/ds/mynumbers")

14/09/29	00:38:47	INFO	SparkContext:	Starting	job:

saveAsTextFile	...

14/09/29	00:38:49	INFO	SparkContext:	Job	finished:

saveAsTextFile	...

The	action	creates	a	directory	and	writes	out	each	partition	as	a	file	within	it.	From	the	command	line
outside	of	the	Spark	shell:

hadoop	fs	-ls	/user/ds/mynumbers

-rw-r--r--			3	ds	supergroup								0	2014-09-29	00:38	myfile.txt/_SUCCESS

-rw-r--r--			3	ds	supergroup								4	2014-09-29	00:38	myfile.txt/part-00000

-rw-r--r--			3	ds	supergroup								4	2014-09-29	00:38	myfile.txt/part-00001

Remember	that	textFile	can	accept	a	directory	of	text	files	as	input,	meaning	that	a	future	Spark	job
could	refer	to	mynumbers	as	an	input	directory.

The	raw	form	of	data	returned	by	the	Scala	REPL	can	be	somewhat	hard	to
read,	especially	for	arrays	that	contain	more	than	a	handful	of	elements.	To
make	it	easier	to	read	the	contents	of	an	array,	we	can	use	the	foreach	method
in	conjunction	with	println	to	print	out	each	value	in	the	array	on	its	own	line:

head.foreach(println)

...

"id_1","id_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1","cmp_lname_c2",

		"cmp_sex","cmp_bd","cmp_bm","cmp_by","cmp_plz","is_match"

37291,53113,0.833333333333333,?,1,?,1,1,1,1,0,TRUE

39086,47614,1,?,1,?,1,1,1,1,1,TRUE

70031,70237,1,?,1,?,1,1,1,1,1,TRUE

84795,97439,1,?,1,?,1,1,1,1,1,TRUE

36950,42116,1,?,1,1,1,1,1,1,1,TRUE

42413,48491,1,?,1,?,1,1,1,1,1,TRUE

25965,64753,1,?,1,?,1,1,1,1,1,TRUE

49451,90407,1,?,1,?,1,1,1,1,0,TRUE

39932,40902,1,?,1,?,1,1,1,1,1,TRUE

The	foreach(println)	pattern	is	one	that	we	will	frequently	use	in	this	book.
It’s	an	example	of	a	common	functional	programming	pattern,	where	we	pass



one	function	(println)	as	an	argument	to	another	function	(foreach)	in	order
to	perform	some	action.	This	kind	of	programming	style	will	be	familiar	to
data	scientists	who	have	worked	with	R	and	are	used	to	processing	vectors	and
lists	by	avoiding	for	loops	and	instead	using	higher-order	functions	like	apply
and	lapply.	Collections	in	Scala	are	similar	to	lists	and	vectors	in	R	in	that	we
generally	want	to	avoid	for	loops	and	instead	process	the	elements	of	the
collection	using	higher-order	functions.

Immediately,	we	see	a	couple	of	issues	with	the	data	that	we	need	to	address
before	we	begin	our	analysis.	First,	the	CSV	files	contain	a	header	row	that
we’ll	want	to	filter	out	from	our	subsequent	analysis.	We	can	use	the	presence
of	the	"id_1"	string	in	the	row	as	our	filter	condition,	and	write	a	small	Scala
function	that	tests	for	the	presence	of	that	string	inside	the	line:

def	isHeader(line:	String)	=	line.contains("id_1")

isHeader:	(line:	String)Boolean

Like	Python,	we	declare	functions	in	Scala	using	the	keyword	def.	Unlike
Python,	we	have	to	specify	the	types	of	the	arguments	to	our	function;	in	this
case,	we	have	to	indicate	that	the	line	argument	is	a	String.	The	body	of	the
function,	which	uses	the	contains	method	for	the	String	class	to	test	whether
or	not	the	characters	"id_1"	appear	anywhere	in	the	string,	comes	after	the
equals	sign.	Even	though	we	had	to	specify	a	type	for	the	line	argument,	note
that	we	did	not	have	to	specify	a	return	type	for	the	function,	because	the	Scala
compiler	was	able	to	infer	the	type	based	on	its	knowledge	of	the	String	class
and	the	fact	that	the	contains	method	returns	true	or	false.

Sometimes	we	will	want	to	specify	the	return	type	of	a	function	ourselves,
especially	for	long,	complex	functions	with	multiple	return	statements,	where
the	Scala	compiler	can’t	necessarily	infer	the	return	type	itself.	We	might	also
want	to	specify	a	return	type	for	our	function	in	order	to	make	it	easier	for
someone	else	reading	our	code	later	to	be	able	to	understand	what	the	function
does	without	having	to	reread	the	entire	method.	We	can	declare	the	return	type
for	the	function	right	after	the	argument	list,	like	this:

def	isHeader(line:	String):	Boolean	=	{

		line.contains("id_1")

}



isHeader:	(line:	String)Boolean

We	can	test	our	new	Scala	function	against	the	data	in	the	head	array	by	using
the	filter	method	on	Scala’s	Array	class	and	then	printing	the	results:

head.filter(isHeader).foreach(println)

...

"id_1","id_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1",...

It	looks	like	our	isHeader	method	works	correctly;	the	only	result	that	was
returned	from	applying	it	to	the	head	array	via	the	filter	method	was	the
header	line	itself.	But	of	course,	what	we	really	want	to	do	is	get	all	of	the	rows
in	the	data	except	the	header	rows.	There	are	a	few	ways	that	we	can	do	this	in
Scala.	Our	first	option	is	to	take	advantage	of	the	filterNot	method	on	the
Array	class:

head.filterNot(isHeader).length

...

res:	Int	=	9

We	could	also	use	Scala’s	support	for	anonymous	functions	to	negate	the
isHeader	function	from	inside	filter:

head.filter(x	=>	!isHeader(x)).length

...

res:	Int	=	9

Anonymous	functions	in	Scala	are	somewhat	like	Python’s	lambda	functions.
In	this	case,	we	defined	an	anonymous	function	that	takes	a	single	argument
called	x,	passes	x	to	the	isHeader	function,	and	returns	the	negation	of	the
result.	Note	that	we	did	not	have	to	specify	any	type	information	for	the	x
variable	in	this	instance;	the	Scala	compiler	was	able	to	infer	that	x	is	a	String
from	the	fact	that	head	is	an	Array[String].

There	is	nothing	that	Scala	programmers	hate	more	than	typing,	so	Scala	has
lots	of	little	features	designed	to	reduce	the	amount	of	typing	necessary.	For
example,	in	our	anonymous	function	definition,	we	had	to	type	the	characters	x
=>	to	declare	our	anonymous	function	and	give	its	argument	a	name.	For
simple	anonymous	functions	like	this	one,	we	don’t	even	have	to	do	that	—



Scala	allows	us	to	use	an	underscore	(_)	to	represent	the	argument	to	the
function	so	that	we	can	save	four	characters:

head.filter(!isHeader(_)).length

...

res:	Int	=	9

Sometimes,	this	abbreviated	syntax	makes	the	code	easier	to	read	because	it
avoids	duplicating	obvious	identifiers.	But	other	times,	this	shortcut	just	makes
the	code	cryptic.	The	code	listings	throughout	this	book	use	one	or	the	other
according	to	our	best	judgment.



Shipping	Code	from	the	Client	to	the	Cluster
We	just	saw	a	wide	variety	of	ways	to	write	and	apply	functions	to	data	in
Scala.	All	the	code	that	we	executed	was	done	against	the	data	inside	the	head
array,	which	was	contained	on	our	client	machine.	Now	we’re	going	to	take	the
code	that	we	just	wrote	and	apply	it	to	the	millions	of	linkage	records
contained	in	our	cluster	and	represented	by	the	rawblocks	RDD	in	Spark.

Here’s	what	the	code	for	this	looks	like;	it	should	feel	eerily	familiar	to	you:

val	noheader	=	rawblocks.filter(x	=>	!isHeader(x))

The	syntax	we	used	to	express	the	filtering	computation	against	the	entire	data
set	on	the	cluster	is	exactly	the	same	as	the	syntax	we	used	to	express	the
filtering	computation	against	the	array	in	head	on	our	local	machine.	We	can
use	the	first	method	on	the	noheader	RDD	to	verify	that	the	filtering	rule
worked	correctly:

noheader.first

...

res:	String	=	37291,53113,0.833333333333333,?,1,?,1,1,1,1,0,TRUE

This	is	incredibly	powerful.	It	means	that	we	can	interactively	develop	and
debug	our	data-munging	code	against	a	small	amount	of	data	that	we	sample
from	the	cluster,	and	then	ship	that	code	to	the	cluster	to	apply	it	to	the	entire
data	set	when	we’re	ready	to	transform	the	entire	data	set.	Best	of	all,	we	never
have	to	leave	the	shell.	There	really	isn’t	another	tool	that	gives	you	this	kind
of	experience.

In	the	next	several	sections,	we’ll	use	this	mix	of	local	development	and	testing
and	cluster	computation	to	perform	more	munging	and	analysis	of	the	record
linkage	data,	but	if	you	need	to	take	a	moment	to	drink	in	the	new	world	of
awesome	that	you	have	just	entered,	we	certainly	understand.



From	RDDs	to	Data	Frames
In	the	first	edition	of	this	book,	we	spent	the	next	several	pages	in	this	chapter
using	our	newfound	ability	to	mix	local	development	and	testing	with	cluster
computations	from	inside	the	REPL	to	write	code	that	parsed	the	CSV	file	of
record	linkage	data,	including	splitting	the	line	up	by	commas,	converting	each
column	to	an	appropriate	data	type	(like	Int	or	Double),	and	handling	invalid
values	that	we	encountered.	Having	the	option	to	work	with	data	in	this	way	is
one	of	the	most	compelling	aspects	of	working	with	Spark,	especially	when
we’re	dealing	with	data	sets	that	have	an	especially	unusual	or	nonstandard
structure	that	make	them	difficult	to	work	with	any	other	way.

At	the	same	time,	most	data	sets	we	encounter	have	a	reasonable	structure	in
place,	either	because	they	were	born	that	way	(like	a	database	table)	or	because
someone	else	has	done	the	work	of	cleaning	and	structuring	the	data	for	us.
For	these	data	sets,	it	doesn’t	really	make	sense	for	us	to	have	to	write	our	own
code	to	parse	the	data;	we	should	simply	use	an	existing	library	that	can
leverage	the	structure	of	the	existing	data	set	to	parse	the	data	into	a	form	that
we	can	use	for	immediate	analysis.	Spark	1.3	introduced	just	such	a	structure:
the	DataFrame.

In	Spark,	the	DataFrame	is	an	abstraction	built	on	top	of	RDDs	for	data	sets	that
have	a	regular	structure	in	which	each	record	is	a	row	made	up	of	a	set	of
columns,	and	each	column	has	a	well-defined	data	type.	You	can	think	of	a	data
frame	as	the	Spark	analogue	of	a	table	in	a	relational	database.	Even	though	the
naming	convention	might	make	you	think	of	a	data.frame	object	in	R	or	a
pandas.DataFrame	object	in	Python,	Spark’s	DataFrames	are	a	different	beast.
This	is	because	they	represent	distributed	data	sets	on	a	cluster,	not	local	data
where	every	row	in	the	data	is	stored	on	the	same	machine.	Although	there	are
similarities	in	how	you	use	DataFrames	and	the	role	they	play	inside	the	Spark
ecosystem,	there	are	some	things	you	may	be	used	to	doing	when	working	with
data	frames	in	R	and	Python	that	do	not	apply	to	Spark,	so	it’s	best	to	think	of
them	as	their	own	distinct	entity	and	try	to	approach	them	with	an	open	mind.

To	create	a	data	frame	for	our	record	linkage	data	set,	we’re	going	to	use	the
other	object	that	was	created	for	us	when	we	started	the	Spark	REPL,	the



SparkSession	object	named	spark:

spark

...

res:	org.apache.spark.sql.SparkSession	=	...

SparkSession	is	a	replacement	for	the	now	deprecated	SQLContext	object	that
was	originally	introduced	in	Spark	1.3.	Like	SQLContext,	SparkSession	is	a
wrapper	around	the	SparkContext	object,	which	you	can	access	directly	from
the	SparkSession:

spark.sparkContext

...

res:	org.apache.spark.SparkContext	=	...

You	should	see	that	the	value	of	spark.sparkContext	is	identical	to	the	value	of
the	sc	variable	that	we	have	been	using	to	create	RDDs	thus	far.	To	create	a	data
frame	from	the	SparkSession,	we	will	use	the	csv	method	on	its	Reader	API:

val	prev	=	spark.read.csv("linkage")

...

prev:	org.apache.spark.sql.DataFrame	=	[_c0:	string,	_c1:	string,	...

By	default,	every	column	in	a	CSV	file	is	treated	as	a	string	type,	and	the
column	names	default	to	_c0,	_c1,	_c2,	….	We	can	look	at	the	head	of	a	data
frame	in	the	shell	by	calling	its	show	method:

prev.show()

We	can	see	that	the	first	row	of	the	DataFrame	is	the	name	of	the	header
columns,	as	we	expected,	and	that	the	CSV	file	has	been	cleanly	split	up	into	its
individual	columns.	We	can	also	see	the	presence	of	the	?	strings	in	some	of
the	columns;	we	will	need	to	handle	these	as	missing	values.	In	addition	to
naming	each	column	correctly,	it	would	be	ideal	if	Spark	could	properly	infer
the	data	type	of	each	of	the	columns	for	us.

Fortunately,	Spark’s	CSV	reader	provides	all	of	this	functionality	for	us	via
options	that	we	can	set	on	the	reader	API.	You	can	see	the	full	list	of	options
that	the	API	takes	at	the	spark-csv	project’s	GitHub	page,	which	was	developed

http://bit.ly/2i8zW6y


separately	for	Spark	1.x	but	is	included	in	Spark	2.x.	For	now,	we’ll	read	and
parse	the	linkage	data	like	this:

val	parsed	=	spark.read.

		option("header",	"true").

		option("nullValue",	"?").

		option("inferSchema",	"true").

		csv("linkage")

When	we	call	show	on	the	parsed	data,	we	see	that	the	column	names	are	set
correctly	and	the	?	strings	have	been	replaced	by	null	values.	To	see	the
inferred	type	for	each	column,	we	can	print	the	schema	of	the	parsed
DataFrame	like	this:

parsed.printSchema()

...

root

	|--	id_1:	integer	(nullable	=	true)

	|--	id_2:	integer	(nullable	=	true)

	|--	cmp_fname_c1:	double	(nullable	=	true)

	|--	cmp_fname_c2:	double	(nullable	=	true)

...

Each	StructField	instance	contains	the	name	of	the	column,	the	most	specific
data	type	that	could	handle	the	type	of	data	contained	in	each	record,	and	a
boolean	field	that	indicates	whether	or	not	the	column	may	contain	null	values,
which	is	true	by	default.	In	order	to	perform	the	schema	inference,	Spark	must
do	two	passes	over	the	data	set:	one	pass	to	figure	out	the	type	of	each	column,
and	a	second	pass	to	do	the	actual	parsing.	If	you	know	the	schema	that	you
want	to	use	for	a	file	ahead	of	time,	you	can	create	an	instance	of	the
org.apache.spark.sql.types.StructType	class	and	pass	it	to	the	Reader	API
via	the	schema	function,	which	can	have	a	significant	performance	benefit	when
the	data	set	is	very	large,	since	Spark	will	not	need	to	perform	an	extra	pass
over	the	data	to	figure	out	the	data	type	of	each	column.

DATA	FORMATS	AND	DATA	FRAMES

Spark	2.0	ships	with	built-in	support	for	reading	and	writing	data	frames	in	a	variety	of	formats	via	the
DataFrameReader	and	DataFrameWriter	APIs.	In	addition	to	the	CSV	format	discussed	here,	you	can
also	read	and	write	structured	data	from	the	following	sources:

json

Supports	many	of	the	same	schema-inference	functionality	that	the	CSV	format	does



parquet	and	orc
Competing	columnar-oriented	binary	file	formats

jdbc

Connects	to	a	relational	database	via	the	JDBC	data	connection	standard

libsvm

Popular	text	file	format	for	representing	labeled	observations	with	sparse	features

text

Maps	each	line	of	a	file	to	a	data	frame	with	a	single	column	of	type	string

You	access	the	methods	of	the	DataFrameReader	API	by	calling	the	read	method	on	a	SparkSession
instance,	and	you	can	load	data	from	a	file	using	either	the	format	and	load	methods,	or	one	of	the
shortcut	methods	for	built-in	formats:

val	d1	=	spark.read.format("json").load("file.json")

val	d2	=	spark.read.json("file.json")

In	this	example,	d1	and	d2	reference	the	same	underlying	JSON	data	and	will	have	the	same	contents.
Each	of	the	different	file	formats	has	its	own	set	of	options	that	can	be	set	via	the	same	option
method	that	we	used	for	CSV	files.

To	write	data	out	again,	you	access	the	DataFrameWriter	API	via	the	write	method	on	any
DataFrame	instance.	The	DataFrameWriter	API	supports	the	same	built-in	formats	as	the
DataFrameReader	API,	so	the	following	two	methods	are	equivalent	ways	of	writing	the	contents	of
the	d1	DataFrame	as	a	Parquet	file:

d1.write.format("parquet").save("file.parquet")

d1.write.parquet("file.parquet")

By	default,	Spark	will	throw	an	error	if	you	try	to	save	a	data	frame	to	a	file	that	already	exists.	You
can	control	Spark’s	behavior	in	this	situation	via	the	SaveMode	enum	on	the	DataFrameWriter	API	to
either	Overwrite	the	existing	file,	Append	the	data	in	the	DataFrame	to	the	file	(if	it	exists),	or	Ignore
the	write	operation	if	the	file	already	exists	and	leave	it	in	place:

d2.write.mode(SaveMode.Ignore).parquet("file.parquet")

You	can	also	specify	the	SaveMode	as	a	string	literal	("overwrite",	"append",	"ignore")	in	Scala,
just	as	you	can	when	working	with	the	DataFrame	API	in	R	and	Python.



Analyzing	Data	with	the	DataFrame	API
Although	the	RDD	API	in	Spark	provides	a	small	number	of	handy	methods
for	analyzing	data	—	like	the	count	method	to	count	the	number	of	records	an
RDD	contained,	countByValue	to	get	a	histogram	of	the	distinct	values,	or	the
stats	method	to	get	summary	statistics	like	min,	max,	mean,	and	standard
deviation	for	an	RDD[Double]	—	the	DataFrame	API	comes	with	a	more
powerful	set	of	tools	that	will	likely	be	familiar	to	data	scientists	who	are	used
to	R,	Python,	and	SQL.	In	this	section,	we	will	begin	to	explore	these	tools	and
how	to	apply	them	to	the	record	linkage	data.

If	we	look	at	the	schema	of	the	parsed	DataFrame	and	the	first	few	rows	of
data,	we	see	this:

The	first	two	fields	are	integer	IDs	that	represent	the	patients	that	were
matched	in	the	record.

The	next	nine	values	are	(possibly	missing)	numeric	values	(either
doubles	or	ints)	that	represent	match	scores	on	different	fields	of	the
patient	records,	such	as	their	names,	birthdays,	and	locations.	The	fields
are	stored	as	integers	when	the	only	possible	values	are	match	(1)	or	no-
match	(0),	and	doubles	whenever	partial	matches	are	possible.

The	last	field	is	a	boolean	value	(true	or	false)	indicating	whether	or	not
the	pair	of	patient	records	represented	by	the	line	was	a	match.

Our	goal	is	to	come	up	with	a	simple	classifier	that	allows	us	to	predict
whether	a	record	will	be	a	match	based	on	the	values	of	the	match	scores	for
the	patient	records.	Let’s	start	by	getting	an	idea	of	the	number	of	records
we’re	dealing	with	via	the	count	method,	which	works	in	exactly	the	same	way
for	DataFrames	and	RDDs:

parsed.count()

...

res:	Long	=	5749132

This	is	a	relatively	small	data	set	—	certainly	small	enough	to	fit	in	memory
on	one	of	the	nodes	in	a	cluster	or	even	on	your	local	machine	if	you	don’t



have	a	cluster	available.	Thus	far,	every	time	we’ve	processed	the	data	in	the
data	set,	Spark	has	re-opened	the	file,	reparsed	the	rows,	and	then	performed
the	action	requested,	like	showing	the	first	few	rows	of	the	data	or	counting	the
number	of	records.	When	we	ask	another	question,	Spark	will	do	these	same
operations,	again	and	again,	even	if	we	have	filtered	the	data	down	to	a	small
number	of	records	or	are	working	with	an	aggregated	version	of	the	original
data	set.

This	isn’t	an	optimal	use	of	our	compute	resources.	After	the	data	has	been
parsed	once,	we’d	like	to	save	the	data	in	its	parsed	form	on	the	cluster	so	that
we	don’t	have	to	reparse	it	every	time	we	want	to	ask	a	new	question	of	the
data.	Spark	supports	this	use	case	by	allowing	us	to	signal	that	a	given	RDD	or
DataFrame	should	be	cached	in	memory	after	it	is	generated	by	calling	the
cache	method	on	the	instance.	Let’s	do	that	now	for	the	parsed	DataFrame:

parsed.cache()

CACHING

Although	the	contents	of	DataFrames	and	RDDs	are	transient	by	default,	Spark	provides	a
mechanism	for	persisting	the	underlying	data:

cached.cache()

cached.count()

cached.take(10)

The	call	to	cache	indicates	that	the	contents	of	the	DataFrame	should	be	stored	in	memory	the	next
time	it’s	computed.	In	this	example,	the	call	to	count	computes	the	contents	initially,	and	the	take
action	returns	the	first	10	elements	of	the	DataFrame	as	a	local	Array[Row].	When	take	is	called,	it
accesses	the	cached	elements	of	cached	instead	of	recomputing	them	from	their	dependencies.

Spark	defines	a	few	different	mechanisms,	or	StorageLevel	values,	for	persisting	data.	cache()	is
shorthand	for	persist(StorageLevel.MEMORY),	which	stores	the	rows	as	unserialized	Java	objects.
When	Spark	estimates	that	a	partition	will	not	fit	in	memory,	it	simply	will	not	store	it,	and	it	will	be
recomputed	the	next	time	it’s	needed.	This	level	makes	the	most	sense	when	the	objects	will	be
referenced	frequently	and/or	require	low-latency	access,	because	it	avoids	any	serialization
overhead.	Its	drawback	is	that	it	takes	up	larger	amounts	of	memory	than	its	alternatives.	Also,
holding	on	to	many	small	objects	puts	pressure	on	Java’s	garbage	collection,	which	can	result	in
stalls	and	general	slowness.

Spark	also	exposes	a	MEMORY_SER	storage	level,	which	allocates	large	byte	buffers	in	memory	and
serializes	the	records	into	them.	When	we	use	the	right	format	(more	on	this	in	a	bit),	serialized	data
usually	takes	up	two	to	five	times	less	space	than	its	raw	equivalent.



Spark	can	use	disk	for	caching	data	as	well.	The	MEMORY_AND_DISK	and	MEMORY_AND_DISK_SER	are
similar	to	the	MEMORY	and	MEMORY_SER	storage	levels,	respectively.	For	the	latter	two,	if	a	partition
will	not	fit	in	memory,	it	is	simply	not	stored,	meaning	that	it	must	be	recomputed	from	its
dependencies	the	next	time	an	action	uses	it.	For	the	former,	Spark	spills	partitions	that	will	not	fit	in
memory	to	disk.

Although	both	DataFrames	and	RDDs	can	be	cached,	Spark	can	use	the	detailed	knowledge	of	the
data	stored	with	a	data	frame	available	via	the	DataFrame’s	schema	to	persist	the	data	far	more
efficiently	than	it	can	with	Java	objects	stored	inside	of	RDDs.

Deciding	when	to	cache	data	can	be	an	art.	The	decision	typically	involves	trade-offs	between	space
and	speed,	with	the	specter	of	garbage-collecting	looming	overhead	to	occasionally	confound	things
further.	In	general,	data	should	be	cached	when	it	is	likely	to	be	referenced	by	multiple	actions,	is
relatively	small	compared	to	the	amount	of	memory/disk	available	on	the	cluster,	and	is	expensive	to
regenerate.

Once	our	data	has	been	cached,	the	next	thing	we	want	to	know	is	the	relative
fraction	of	records	that	were	matches	versus	those	that	were	nonmatches.	With
the	RDD	API,	we	would	need	to	write	an	inlined	Scala	function	to	extract	the
value	of	the	is_match	column	from	each	record	and	then	call	countByValue	on
the	resulting	RDD[Boolean]	to	sum	up	the	frequency	of	each	record	and	return
it	to	the	client	as	a	Map[Boolean,	Long].	In	fact,	we	can	still	do	this	calculation
against	the	RDD	that	underlies	the	parsed	DataFrame:

parsed.rdd.

		map(_.getAs[Boolean]("is_match")).

		countByValue()

...

Map(true	->	20931,	false	->	5728201)

The	RDD	that	a	data	frame	wraps	is	made	up	of	instances	of	the
org.apache.spark.sql.Row	class,	which	has	accessor	methods	for	getting	the
values	inside	each	record	by	index	position	(counting	from	zero)	as	well	as	the
getAs[T]	method,	which	allows	us	to	look	up	fields	of	a	given	type	by	their
name.

Although	the	RDD-based	analysis	gets	us	the	result	we	want,	it	still	leaves	a	lot
to	be	desired	as	a	general-purpose	way	of	analyzing	data	in	Spark.	First,	using
the	countByValue	function	to	do	the	counts	is	only	the	right	thing	to	do	when
we	know	that	there	are	just	a	few	distinct	values	in	the	data	set.	If	there	are	lots
of	distinct	values,	it’s	more	efficient	to	use	an	RDD	function	that	won’t	return
the	results	to	the	client,	like	reduceByKey.	Second,	if	we	require	the	results	of



the	countByValue	aggregation	in	a	subsequent	computation,	we	need	to	use	the
parallelize	method	of	the	SparkContext	to	ship	the	data	back	from	the	client
to	the	cluster.	In	general,	we	prefer	to	have	a	single	way	of	aggregating
structured	data	that	would	work	for	any	size	data	set,	and	this	is	exactly	what
the	DataFrame	API	provides:

parsed.

		groupBy("is_match").

		count().

		orderBy($"count".desc)

		show()

...

+--------+-------+

|is_match|		count|

+--------+-------+

|			false|5728201|

|				true|		20931|

+--------+-------+

Instead	of	writing	a	function	to	extract	the	is_match	column,	we	simply	pass	its
name	to	the	groupBy	method	on	the	DataFrame,	call	the	count	method	to,	well,
count	the	number	of	records	inside	each	grouping,	sort	the	resulting	data	in
descending	order	based	on	the	count	column,	and	then	cleanly	render	the	result
of	the	computation	in	the	REPL	with	show.	Under	the	covers,	the	Spark	engine
determines	the	most	efficient	way	to	perform	the	aggregation	and	return	the
results,	without	us	having	to	worry	about	the	details	of	which	RDD	APIs	to	use.
The	result	is	a	cleaner,	faster,	and	more	expressive	way	to	do	data	analysis	in
Spark.

Note	that	there	are	two	ways	we	can	reference	the	names	of	the	columns	in	the
DataFrame:	either	as	literal	strings,	like	in	groupBy("is_match"),	or	as	Column
objects	by	using	the	special	$"<col>"	syntax	that	we	used	on	the	count	column.
Either	approach	is	valid	in	most	cases,	but	we	needed	to	use	the	$	syntax	to	call
the	desc	method	on	the	count	column.	If	we	had	omitted	the	$	in	front	of	the
string,	Scala	would	have	thrown	an	error	because	the	String	class	does	not
have	a	method	named	desc.

DATAFRAME	AGGREGATION	FUNCTIONS

In	addition	to	count,	we	can	also	compute	more	complex	aggregations	like	sums,	mins,	maxes,
means,	and	standard	deviation	using	the	agg	method	of	the	DataFrame	API	in	conjunction	with	the



aggregation	functions	defined	in	the	org.apache.spark.sql.functions	package.	For	example,	to	find
the	mean	and	standard	deviation	of	the	cmp_sex	field	in	the	overall	parsed	DataFrame,	we	could
type:

parsed.agg(avg($"cmp_sex"),	stddev($"cmp_sex")).show()

+-----------------+--------------------+

|					avg(cmp_sex)|stddev_samp(cmp_sex)|

+-----------------+--------------------+

|0.955001381078048|		0.2073011111689795|

+-----------------+--------------------+

Note	that	by	default,	Spark	computes	the	sample	standard	deviation;	there	is	also	a	stddev_pop
function	for	computing	the	population	standard	deviation.

You	may	have	noticed	that	the	functions	on	the	DataFrame	API	are	similar	to
the	components	of	a	SQL	query.	This	isn’t	a	coincidence,	and	in	fact	we	have
the	option	of	treating	any	DataFrame	we	create	as	if	it	were	a	database	table
and	expressing	our	questions	using	familiar	and	powerful	SQL	syntax.	First,
we	need	to	tell	the	Spark	SQL	execution	engine	the	name	it	should	associate
with	the	parsed	DataFrame,	since	the	name	of	the	variable	itself	(“parsed”)
isn’t	available	to	Spark:

parsed.createOrReplaceTempView("linkage")

Because	the	parsed	DataFrame	is	only	available	during	the	length	of	this	Spark
REPL	session,	it	is	a	temporary	table.	Spark	SQL	may	also	be	used	to	query
persistent	tables	in	HDFS	if	we	configure	Spark	to	connect	to	an	Apache	Hive
metastore	that	tracks	the	schemas	and	locations	of	structured	data	sets.

Once	our	temporary	table	is	registered	with	the	Spark	SQL	engine,	we	can
query	it	like	this:

spark.sql("""

		SELECT	is_match,	COUNT(*)	cnt

		FROM	linkage

		GROUP	BY	is_match

		ORDER	BY	cnt	DESC

""").show()

...

+--------+-------+

|is_match|				cnt|

+--------+-------+

|			false|5728201|

|				true|		20931|

+--------+-------+



Like	Python,	Scala	allows	us	to	write	multiline	strings	via	the	convention	of
three	double	quotes	in	a	row.	In	Spark	1.x,	the	Spark	SQL	compiler	was
primarily	aimed	at	replicating	the	nonstandard	syntax	of	HiveQL	in	order	to
support	users	who	were	migrating	to	Spark	from	Apache	Hive.	In	Spark	2.0,
you	have	the	option	of	running	Spark	using	either	an	ANSI	2003-compliant
version	of	Spark	SQL	(the	default)	or	in	HiveQL	mode	by	calling	the
enableHiveSupport	method	when	you	create	a	SparkSession	instance	via	its
Builder	API.

Should	you	use	Spark	SQL	or	the	DataFrame	API	to	do	your	analysis	in	Spark?
There	are	pros	and	cons	to	each:	SQL	has	the	benefit	of	being	broadly	familiar
and	expressive	for	simple	queries.	It	is	also	the	best	way	to	quickly	read	and
filter	data	stored	in	commonly	used	columnar	file	formats	like	ORC	and
Parquet.	The	downside	of	SQL	is	that	it	can	be	difficult	to	express	complex,
multistage	analyses	in	a	dynamic,	readable,	and	testable	way	—	all	areas	where
the	DataFrame	API	shines.	Throughout	the	rest	of	the	book,	we	use	both	Spark
SQL	and	the	DataFrame	API,	and	leave	it	as	an	exercise	for	the	reader	to
examine	the	choices	we	made	and	translate	our	computations	from	one
interface	to	the	other.

CONNECTING	SPARK	SQL	TO	HIVE

Spark	1.x	shipped	with	a	HiveContext	class	that	was	a	subclass	of	SQLContext	and	supported	Hive’s
unique	SQL	dialect	(HiveQL).	This	class	could	be	used	to	talk	to	a	Hive	metastore	by	copying	a
hive-site.xml	file	into	the	conf	directory	of	the	Spark	installation.	In	Spark	2.x,	the	HiveContext	is
deprecated,	but	you	can	still	connect	to	a	Hive	metastore	via	a	hive-site.xml	file,	and	you	can	also
use	HiveQL	in	queries	by	calling	the	enableHiveSupport	method	on	the	SparkSession	Builder	API:

val	sparkSession	=	SparkSession.builder.

	master("local[4]")

	.enableHiveSupport()

	.getOrCreate()

In	Spark	2.x,	you	can	treat	any	table	in	the	Hive	metastore	as	a	data	frame,	execute	Spark	SQL
queries	against	tables	defined	in	the	metastore,	and	persist	the	output	of	those	queries	to	the	metastore
so	that	they	can	be	queried	by	other	tools,	including	Hive	itself,	Apache	Impala,	or	Presto.



Fast	Summary	Statistics	for	DataFrames
Although	there	are	many	kinds	of	analyses	that	may	be	expressed	equally	well
in	SQL	or	with	the	DataFrame	API,	there	are	certain	common	things	that	we
want	to	be	able	to	do	with	data	frames	that	can	be	tedious	to	express	in	SQL.
One	such	analysis	that	is	especially	helpful	is	computing	the	min,	max,	mean,
and	standard	deviation	of	all	the	non-null	values	in	the	numerical	columns	of	a
data	frame.	In	R,	this	function	is	named	summary;	and	in	Spark,	this	function	has
the	same	name	that	it	does	in	Pandas,	describe:

val	summary	=	parsed.describe()

...

summary.show()

The	summary	DataFrame	has	one	column	for	each	variable	in	the	parsed
DataFrame,	along	with	another	column	(also	named	summary)	that	indicates
which	metric	—	count,	mean,	stddev,	min,	or	max	—	is	present	in	the	rest	of	the
columns	in	the	row.	We	can	use	the	select	method	to	choose	a	subset	of	the
columns	in	order	to	make	the	summary	statistics	easier	to	read	and	compare:

summary.select("summary",	"cmp_fname_c1",	"cmp_fname_c2").show()

+-------+------------------+------------------+

|summary|						cmp_fname_c1|						cmp_fname_c2|

+-------+------------------+------------------+

|		count|											5748125|												103698|

|			mean|0.7129024704436274|0.9000176718903216|

|	stddev|0.3887583596162788|0.2713176105782331|

|				min|															0.0|															0.0|

|				max|															1.0|															1.0|

+-------+------------------+------------------+

Note	the	difference	in	the	value	of	the	count	variable	between	cmp_fname_c1
and	cmp_fname_c2.	While	almost	every	record	has	a	non-null	value	for
cmp_fname_c1,	less	than	2%	of	the	records	have	a	non-null	value	for
cmp_fname_c2.	To	create	a	useful	classifier,	we	need	to	rely	on	variables	that
are	almost	always	present	in	the	data	—	unless	their	missingness	indicates
something	meaningful	about	whether	the	record	matches.

Once	we	have	an	overall	feel	for	the	distribution	of	the	variables	in	our	data,



we	want	to	understand	how	the	values	of	those	variables	are	correlated	with	the
value	of	the	is_match	column.	Therefore,	our	next	step	is	to	compute	those
same	summary	statistics	for	just	the	subsets	of	the	parsed	DataFrame	that
correspond	to	matches	and	nonmatches.	We	can	filter	DataFrames	using	either
SQL-style	where	syntax	or	with	Column	objects	using	the	DataFrame	API	and
then	use	describe	on	the	resulting	DataFrames:

val	matches	=	parsed.where("is_match	=	true")

val	matchSummary	=	matches.describe()

val	misses	=	parsed.filter($"is_match"	===	false)

val	missSummary	=	misses.describe()

The	logic	inside	the	string	we	pass	to	the	where	function	can	include	statements
that	would	be	valid	inside	a	WHERE	clause	in	Spark	SQL.	The	filtering	condition
that	uses	the	DataFrame	API	is	a	bit	more	complex:	we	need	to	use	the	===
operator	on	the	$"is_match"	column,	and	we	need	to	wrap	the	boolean	literal
false	with	the	lit	function	in	order	to	turn	it	into	another	column	object	that
is_match	can	be	compared	with.	Note	that	the	where	function	is	an	alias	for	the
filter	function;	we	could	have	reversed	the	where	and	filter	calls	in	the
above	snippet	and	everything	would	have	worked	the	same	way.

We	can	now	start	to	compare	our	matchSummary	and	missSummary	DataFrames
to	see	how	the	distribution	of	the	variables	changes	depending	on	whether	the
record	is	a	match	or	a	miss.	Although	this	is	a	relatively	small	data	set,	doing
this	comparison	is	still	somewhat	tedious	—	what	we	really	want	is	to
transpose	the	matchSummary	and	missSummary	DataFrames	so	that	the	rows	and
columns	are	swapped,	which	would	allow	us	to	join	the	transposed	DataFrames
together	by	variable	and	analyze	the	summary	statistics,	a	practice	that	most
data	scientists	know	as	“pivoting”	or	“reshaping”	a	data	set.	In	the	next	section,
we’ll	show	you	how	to	perform	these	transforms	in	Spark.



Pivoting	and	Reshaping	DataFrames
The	first	thing	we	need	to	do	in	order	to	transpose	our	summary	statistics	is	to
convert	the	matchSummary	and	missSummary	from	“wide”	form,	in	which	we
have	rows	of	metrics	and	columns	of	variables,	into	“long”	form,	where	each
row	has	one	metric,	one	variable,	and	the	value	of	that	metric/variable	pair.
Once	that	is	done,	we	will	complete	our	transpose	operation	by	transforming
the	long-form	DataFrame	into	another	wide-form	DataFrame,	only	this	time
the	variables	will	correspond	to	the	rows	and	the	metrics	will	be	in	the
columns.

To	convert	from	a	wide	form	to	a	long	form,	we’ll	take	advantage	of	the
DataFrame’s	flatMap	function,	which	is	a	wrapper	around	RDD.flatMap.	A
flatMap	is	one	of	the	most	useful	transforms	in	Spark:	it	takes	a	function
argument	that	processes	each	input	record	and	returns	a	sequence	of	zero	or
more	output	records.	You	can	think	of	flatMap	as	a	generalization	of	the	map
and	filter	transforms	that	we	have	used	so	far:	a	map	is	a	specialization	of
flatMap	for	the	case	where	each	input	record	has	exactly	one	output	record,
and	a	filter	is	a	specialization	of	flatMap	where	the	input	and	output	types	are
the	same	and	either	zero	or	one	records	are	returned	based	on	a	boolean
condition	function.

For	our	flatMap	function	to	work	for	general	data	frames,	we	need	to	use	the
schema	object	of	the	DataFrame	returned	by	a	call	to	describe	to	get	the	names
of	the	columns:

summary.printSchema()

...

root

	|--	summary:	string	(nullable	=	true)

	|--	id_1:	string	(nullable	=	true)

	|--	id_2:	string	(nullable	=	true)

	|--	cmp_fname_c1:	string	(nullable	=	true)

...

In	the	summary	schema,	every	field	is	treated	as	a	string.	Since	we	want	to
analyze	the	summary	statistics	as	numbers,	we’ll	need	to	convert	the	values
from	strings	to	doubles	as	we	process	them.	Our	output	should	be	a	data	frame



that	has	three	columns:	the	name	of	the	metric	(count,	mean,	etc.),	the	name	of
the	column	(id1,	cmp_by,	etc.),	and	the	Double	value	of	the	summary	statistic
for	that	column:

val	schema	=	summary.schema

val	longForm	=	summary.flatMap(row	=>	{

		val	metric	=	row.getString(0)

		(1	until	row.size).map(i	=>	{

				(metric,	schema(i).name,	row.getString(i).toDouble)

		})

})

There	is	a	lot	going	on	in	this	snippet,	so	let’s	take	each	line	one	by	one.	For
each	row	in	the	summary	DataFrame,	we	are	getting	the	name	of	the	metric	for
that	row	positionally,	by	calling	row.getString(0).	For	the	other	columns	in
the	row,	from	position	1	until	the	end,	we	are	generating	a	sequence	of	tuples
as	the	result	of	the	flatMap	operation,	where	the	first	entry	in	the	tuple	is	the
name	of	the	metric,	the	second	entry	is	the	name	of	the	column	(which	we
access	via	the	schema(i).name	object),	and	the	third	entry	is	the	value	of	the
statistic,	which	we	have	coerced	to	a	Double	value	from	its	original	string	by
calling	the	toDouble	method	on	row.getString(i).

The	toDouble	method	is	an	example	of	one	of	Scala’s	most	powerful	(and
arguably	dangerous)	features:	implicit	types.	In	Scala,	an	instance	of	the	String
class	is	just	a	java.lang.String,	and	the	java.lang.String	class	does	not
have	a	method	named	toDouble.	Instead,	the	methods	are	defined	in	a	Scala
class	called	StringOps.	Implicits	work	like	this:	if	you	call	a	method	on	a	Scala
object,	and	the	Scala	compiler	does	not	see	a	definition	for	that	method	in	the
class	definition	for	that	object,	the	compiler	will	try	to	convert	your	object	to
an	instance	of	a	class	that	does	have	that	method	defined.	In	this	case,	the
compiler	will	see	that	Java’s	String	class	does	not	have	a	toDouble	method
defined	but	that	the	StringOps	class	does,	and	that	the	StringOps	class	has	a
method	that	can	convert	an	instance	of	the	String	class	into	an	instance	of	the
StringOps	class.	The	compiler	silently	performs	the	conversion	of	our	String
object	into	a	StringOps	object,	and	then	calls	the	toDouble	method	on	the	new
object.

Developers	who	write	libraries	in	Scala	(including	the	core	Spark	developers)



really	like	implicit	type	conversion;	it	allows	them	to	enhance	the	functionality
of	core	classes	like	String	that	are	otherwise	closed	to	modification.	For	a
user	of	these	tools,	implicit	type	conversions	are	more	of	a	mixed	bag,	because
they	can	make	it	difficult	to	figure	out	exactly	where	a	particular	class	method
is	defined.	Nonetheless,	we’re	going	to	encounter	implicit	conversions
throughout	our	examples,	so	it’s	best	that	we	get	used	to	them	now.

The	last	thing	to	note	about	this	snippet	is	the	type	of	the	longForm	variable:

longForm:	org.apache.spark.sql.Dataset[(String,	String,	Double)]

This	is	our	first	direct	encounter	with	the	Dataset[T]	interface,	although	we
have	been	using	it	all	along	—	a	data	frame	is	simply	an	alias	for	the
Dataset[Row]	type!	Dataset[T]	is	a	new	addition	to	the	Spark	2.0	APIs	and
generalizes	the	DataFrame	type	that	was	introduced	in	Spark	1.3	to	be	able	to
handle	a	richer	set	of	data	types	than	just	instances	of	the	Row	class.	We’ll	look
at	the	Dataset	interface	a	bit	more	closely	later	in	the	chapter,	but	for	now,	all
you	need	to	know	is	that	we	can	always	convert	a	Dataset	back	to	a	data	frame
thanks	to	some	implicit	conversion	magic	in	the	Spark	API:

val	longDF	=	longForm.toDF("metric",	"field",	"value")

longDF.show()

+------+------------+-------------------+

|metric|							field|														value|

+------+------------+-------------------+

|	count|								id_1|										5749132.0|

|	count|								id_2|										5749132.0|

|	count|cmp_fname_c1|										5748125.0|

...

|	count|						cmp_by|										5748337.0|

|	count|					cmp_plz|										5736289.0|

|		mean|								id_1|		33324.48559643438|

|		mean|								id_2|		66587.43558331935|

|		mean|cmp_fname_c1|	0.7129024704436274|

...

|		mean|						cmp_bd|0.22446526708507172|

|		mean|						cmp_bm|0.48885529849763504|

+------+------------+-------------------+

Given	a	data	frame	in	long	form,	we	can	transform	it	to	a	wide	form	by	using
the	groupBy	operator	on	the	column	that	we	want	to	use	as	the	pivot	table’s	row
followed	by	the	pivot	operator	on	the	column	that	we	want	to	use	as	the	pivot
table’s	column.	The	pivot	operator	needs	to	know	the	distinct	set	of	values	of



the	pivot	column	that	we	want	to	use	for	the	columns,	and	we	can	specify	the
value	in	each	cell	of	the	wide	table	by	using	an	agg(first)	operation	on	the
values	column,	which	works	correctly	because	there	is	only	a	single	value	for
each	combination	of	field	and	metric:

val	wideDF	=	longDF.

		groupBy("field").

		pivot("metric",	Seq("count",	"mean",	"stddev",	"min",	"max")).

		agg(first("value"))

wideDF.select("field",	"count",	"mean").show()

...

+------------+---------+-------------------+

|							field|				count|															mean|

+------------+---------+-------------------+

|					cmp_plz|5736289.0|0.00552866147434343|

|cmp_lname_c1|5749132.0|	0.3156278193084133|

|cmp_lname_c2|			2464.0|0.31841283153174377|

|					cmp_sex|5749132.0|		0.955001381078048|

|						cmp_bm|5748337.0|0.48885529849763504|

...

|						cmp_bd|5748337.0|0.22446526708507172|

|						cmp_by|5748337.0|	0.2227485966810923|

+------------+---------+-------------------+

Now	that	we	have	figured	out	how	to	transpose	a	summary	DataFrame,	let’s
implement	our	logic	into	a	function	that	we	can	reuse	on	the	matchSummary	and
missSummary	DataFrames.	Using	a	text	editor	in	another	shell	window,	copy
and	paste	the	following	code	and	save	it	in	a	file	called	Pivot.scala:

import	org.apache.spark.sql.DataFrame

import	org.apache.spark.sql.functions.first

def	pivotSummary(desc:	DataFrame):	DataFrame	=	{

		val	schema	=	desc.schema

		import	desc.sparkSession.implicits._

		val	lf	=	desc.flatMap(row	=>	{

				val	metric	=	row.getString(0)

				(1	until	row.size).map(i	=>	{

						(metric,	schema(i).name,	row.getString(i).toDouble)

				})

		}).toDF("metric",	"field",	"value")

		lf.groupBy("field").

				pivot("metric",	Seq("count",	"mean",	"stddev",	"min",	"max")).

				agg(first("value"))

}

Now	in	your	Spark	shell,	type	:load	Pivot.scala,	and	the	Scala	REPL	will
compile	your	code	on	the	fly	and	make	the	pivotSummary	function	available



for	use	on	the	matchSummary	and	missSummary	DataFrames:

val	matchSummaryT	=	pivotSummary(matchSummary)

val	missSummaryT	=	pivotSummary(missSummary)



Joining	DataFrames	and	Selecting	Features
So	far,	we	have	only	used	Spark	SQL	and	the	DataFrame	API	to	filter	and
aggregate	the	records	from	a	data	set,	but	we	can	also	use	these	tools	in	order
to	perform	joins	(inner,	left	outer,	right	outer,	or	full	outer)	on	DataFrames	as
well.	Although	the	DataFrame	API	includes	a	join	function,	it’s	often	easier	to
express	these	joins	using	Spark	SQL,	especially	when	the	tables	we	are	joining
have	a	large	number	of	column	names	in	common	and	we	want	to	be	able	to
clearly	indicate	which	column	we	are	referring	to	in	our	select	expressions.
Let’s	create	temporary	views	for	the	matchSummaryT	and	missSummaryT
DataFrames,	join	them	on	the	field	column,	and	compute	some	simple
summary	statistics	on	the	resulting	rows:

matchSummaryT.createOrReplaceTempView("match_desc")

missSummaryT.createOrReplaceTempView("miss_desc")

spark.sql("""

		SELECT	a.field,	a.count	+	b.count	total,	a.mean	-	b.mean	delta

		FROM	match_desc	a	INNER	JOIN	miss_desc	b	ON	a.field	=	b.field

		WHERE	a.field	NOT	IN	("id_1",	"id_2")

		ORDER	BY	delta	DESC,	total	DESC

""").show()

...

+------------+---------+--------------------+

|							field|				total|															delta|

+------------+---------+--------------------+

|					cmp_plz|5736289.0|		0.9563812499852176|

|cmp_lname_c2|			2464.0|		0.8064147192926264|

|						cmp_by|5748337.0|		0.7762059675300512|

|						cmp_bd|5748337.0|			0.775442311783404|

|cmp_lname_c1|5749132.0|		0.6838772482590526|

|						cmp_bm|5748337.0|		0.5109496938298685|

|cmp_fname_c1|5748125.0|		0.2854529057460786|

|cmp_fname_c2|	103698.0|	0.09104268062280008|

|					cmp_sex|5749132.0|0.032408185250332844|

+------------+---------+--------------------+

A	good	feature	has	two	properties:	it	tends	to	have	significantly	different
values	for	matches	and	nonmatches	(so	the	difference	between	the	means	will
be	large)	and	it	occurs	often	enough	in	the	data	that	we	can	rely	on	it	to	be
regularly	available	for	any	pair	of	records.	By	this	measure,	cmp_fname_c2
isn’t	very	useful	because	it’s	missing	a	lot	of	the	time	and	the	difference	in	the
mean	value	for	matches	and	nonmatches	is	relatively	small	—	0.09,	for	a	score
that	ranges	from	0	to	1.	The	cmp_sex	feature	also	isn’t	particularly	helpful



because	even	though	it’s	available	for	any	pair	of	records,	the	difference	in
means	is	just	0.03.

Features	cmp_plz	and	cmp_by,	on	the	other	hand,	are	excellent.	They	almost
always	occur	for	any	pair	of	records,	and	there	is	a	very	large	difference	in	the
mean	values	(more	than	0.77	for	both	features.)	Features	cmp_bd,
cmp_lname_c1,	and	cmp_bm	also	seem	beneficial:	they	are	generally	available	in
the	data	set	and	the	difference,	in	mean	values	for	matches	and	nonmatches	are
substantial.

Features	cmp_fname_c1	and	cmp_lname_c2	are	more	of	a	mixed	bag:
cmp_fname_c1	doesn’t	discriminate	all	that	well	(the	difference	in	the	means	is
only	0.28)	even	though	it’s	usually	available	for	a	pair	of	records,	whereas
cmp_lname_c2	has	a	large	difference	in	the	means	but	it’s	almost	always
missing.	It’s	not	quite	obvious	under	what	circumstances	we	should	include
these	features	in	our	model	based	on	this	data.

For	now,	we’re	going	to	use	a	simple	scoring	model	that	ranks	the	similarity
of	pairs	of	records	based	on	the	sums	of	the	values	of	the	obviously	good
features:	cmp_plz,	cmp_by,	cmp_bd,	cmp_lname_c1,	and	cmp_bm.	For	the	few
records	where	the	values	of	these	features	are	missing,	we’ll	use	0	in	place	of
the	null	value	in	our	sum.	We	can	get	a	rough	feel	for	the	performance	of	our
simple	model	by	creating	a	data	frame	of	the	computed	scores	and	the	value	of
the	is_match	column	and	evaluating	how	well	the	score	discriminates	between
matches	and	nonmatches	at	various	thresholds.



Preparing	Models	for	Production	Environments
Although	we	could	write	this	scoring	function	as	a	Spark	SQL	query,	there	are
many	situations	in	which	we	want	to	be	able	to	deploy	a	scoring	rule	or
machine	learning	model	into	a	production	environment,	and	where	we	may	not
have	enough	time	to	run	a	Spark	SQL	to	generate	an	answer	to	our	question.
For	these	situations,	we	want	to	be	able	to	write	and	test	functions	that	are	able
to	work	with	Spark	but	that	do	not	require	any	production	code	to	depend	on
the	Spark	JARs	or	require	that	a	SparkSession	be	run	in	order	to	excecute	the
code.

To	abstract	away	the	Spark-specific	components	of	our	model,	we	would	like
to	have	a	way	of	creating	a	simple	record	type	that	allows	us	to	work	with	the
fields	in	the	DataFrame	as	statically	typed	variables	instead	of	as	fields	that	we
look	up	dynamically	inside	a	Row.	Fortunately,	Scala	provides	a	convenient
syntax	for	creating	these	records,	called	case	classes.	A	case	class	is	a	simple
type	of	immutable	class	that	comes	with	implementations	of	all	of	the	basic
Java	class	methods,	like	toString,	equals,	and	hashCode,	which	makes	them
very	easy	to	use.	Let’s	declare	a	case	class	for	our	record	linkage	data,	where
the	names	and	types	of	the	fields	map	exactly	to	the	names	and	types	of	the
columns	in	the	parsed	DataFrame:

case	class	MatchData(

		id_1:	Int,

		id_2:	Int,

		cmp_fname_c1:	Option[Double],

		cmp_fname_c2:	Option[Double],

		cmp_lname_c1:	Option[Double],

		cmp_lname_c2:	Option[Double],

		cmp_sex:	Option[Int],

		cmp_bd:	Option[Int],

		cmp_bm:	Option[Int],

		cmp_by:	Option[Int],

		cmp_plz:	Option[Int],

		is_match:	Boolean

)

Note	that	we	are	using	Scala’s	built-in	Option[T]	type	to	represent	fields	whose
values	may	be	null	in	our	input	data.	The	Option	class	requires	that	client	code
check	to	see	whether	a	particular	field	is	absent	(represented	by	the	None



object)	before	it	is	used,	which	significantly	reduces	the	occurrence	of
NullPointerExceptions	in	Scala	code.	For	fields	that	can	never	be	null,	like
id_1,	id_2,	and	is_match,	we	can	omit	the	Option	wrapper.

Once	our	class	is	defined,	we	can	use	the	as[T]	method	to	convert	the	parsed
DataFrame	into	a	Dataset[MatchData]:

val	matchData	=	parsed.as[MatchData]

matchData.show()

As	you	can	see,	all	of	the	columns	and	values	of	the	matchData	data	set	are	the
same	as	the	data	in	the	parsed	DataFrame,	and	we	can	still	use	all	of	the	SQL-
style	DataFrame	API	methods	and	Spark	SQL	code	against	the	matchData	data
set.	The	major	difference	between	the	two	is	that	when	we	call	functions	like
map,	flatMap,	or	filter	against	matchData,	we	are	processing	instances	of	the
MatchData	case	class	instead	of	the	Row	class.

For	our	scoring	function,	we	are	going	to	sum	up	the	value	of	one	field	of	type
Option[Double]	(cmp_lname_c1)	and	four	fields	of	type	Option[Int]	(cmp_plz,
cmp_by,	cmp_bd,	and	cmp_bm).	Let’s	write	a	small	helper	case	class	to	cut	down
on	some	of	the	boilerplate	code	associated	with	checking	for	the	presence	of
the	Option	values:

case	class	Score(value:	Double)	{

		def	+(oi:	Option[Int])	=	{

				Score(value	+	oi.getOrElse(0))

		}

}

The	Score	case	class	starts	with	a	value	of	type	Double	(the	running	sum)	and
defines	a	\+	method	that	allows	us	to	merge	an	Option[Int]	value	into	the
running	sum	by	getting	the	value	of	the	Option	or	returning	0	if	it	is	missing.
Here,	we’re	taking	advantage	of	the	fact	that	Scala	lets	you	define	functions
using	a	much	broader	set	of	names	than	Java	to	make	our	scoring	function	a
bit	eaiser	to	read:

def	scoreMatchData(md:	MatchData):	Double	=	{

		(Score(md.cmp_lname_c1.getOrElse(0.0))	+	md.cmp_plz	+

						md.cmp_by	+	md.cmp_bd	+	md.cmp_bm).value

}



With	our	scoring	function	in	hand,	we	can	now	compute	our	scores	and	the
value	of	the	is_match	field	for	each	MatchData	object	in	the	matchData	data	set
and	store	the	results	in	a	data	frame:

val	scored	=	matchData.map	{	md	=>

(scoreMatchData(md),	md.is_match)

}.toDF("score",	"is_match")



Model	Evaluation
The	final	step	in	creating	our	scoring	function	is	to	decide	on	what	threshold
the	score	must	exceed	in	order	for	us	to	predict	that	the	two	records	represent	a
match.	If	we	set	the	threshold	too	high,	then	we	will	incorrectly	mark	a
matching	record	as	a	miss	(called	the	false-negative	rate),	whereas	if	we	set	the
threshold	too	low,	we	will	incorrectly	label	misses	as	matches	(the	false-
positive	rate.)	For	any	nontrivial	problem,	we	always	have	to	trade	some	false
positives	for	some	false	negatives,	and	the	question	of	what	the	threshold	value
should	be	usually	comes	down	to	the	relative	cost	of	the	two	kinds	of	errors	in
the	situation	to	which	the	model	is	being	applied.

To	help	us	choose	a	threshold,	it’s	helpful	to	create	a	2×2	contingency	table
(which	is	sometimes	called	a	cross	tabulation,	or	crosstab)	that	counts	the
number	of	records	whose	scores	fall	above/below	the	threshold	value	crossed
with	the	number	of	records	in	each	of	those	categories	that	were/were	not
matches.	Since	we	don’t	know	what	threshold	value	we’re	going	to	use	yet,
let’s	write	a	function	that	takes	the	scored	DataFrame	and	the	choice	of
threshold	as	parameters	and	computes	the	crosstabs	using	the	DataFrame	API:

def	crossTabs(scored:	DataFrame,	t:	Double):	DataFrame	=	{

		scored.

				selectExpr(s"score	>=	$t	as	above",	"is_match").

				groupBy("above").

				pivot("is_match",	Seq("true",	"false")).

				count()

}

Note	that	we	are	including	the	selectExpr	method	of	the	DataFrame	API	to
dynamically	determine	the	value	of	the	field	named	above	based	on	the	value	of
the	t	argument	using	Scala’s	string	interpolation	syntax,	which	allows	us	to
substitute	variables	by	name	if	we	preface	the	string	literal	with	the	letter	s	(yet
another	handy	bit	of	Scala	implicit	magic).	Once	the	above	field	is	defined,	we
create	the	crosstab	with	a	standard	combination	of	the	groupBy,	pivot,	and
count	methods	that	we	used	before.

Applying	a	high	threshold	value	of	4.0,	meaning	that	the	average	of	the	five
features	is	0.8,	we	can	filter	out	almost	all	of	the	nonmatches	while	keeping



over	90%	of	the	matches:

crossTabs(scored,	4.0).show()

...

+-----+-----+-------+

|above|	true|		false|

+-----+-----+-------+

|	true|20871|				637|

|false|			60|5727564|

+-----+-----+-------+

Applying	the	lower	threshold	of	2.0,	we	can	ensure	that	we	capture	all	of	the
known	matching	records,	but	at	a	substantial	cost	in	terms	of	false	positive
(top-right	cell):

crossTabs(scored,	2.0).show()

...

+-----+-----+-------+

|above|	true|		false|

+-----+-----+-------+

|	true|20931|	596414|

|false|	null|5131787|

+-----+-----+-------+

Even	though	the	number	of	false	positives	is	higher	than	we	want,	this	more
generous	filter	still	removes	90%	of	the	nonmatching	records	from	our
consideration	while	including	every	positive	match.	Even	though	this	is	pretty
good,	it’s	possible	to	do	even	better;	see	if	you	can	find	a	way	to	use	some	of
the	other	values	from	MatchData	(both	missing	and	not)	to	come	up	with	a
scoring	function	that	successfully	identifies	every	true	match	at	the	cost	of	less
than	100	false	positives.



Where	to	Go	from	Here
If	this	chapter	was	your	first	time	carrying	out	data	preparation	and	analysis
with	Scala	and	Spark,	or	if	you’re	familiar	with	the	Spark	1.0	APIs	and	are
getting	up	to	speed	with	the	new	techniques	in	Spark	2.0,	we	hope	that	you	got	a
feel	for	what	a	powerful	foundation	these	tools	provide.	If	you	have	been	using
Scala	and	Spark	for	a	while,	we	hope	that	you	will	pass	this	chapter	along	to
your	friends	and	colleagues	as	a	way	of	introducing	them	to	that	power	as	well.

Our	goal	for	this	chapter	was	to	provide	you	with	enough	Scala	knowledge	to
be	able	to	understand	and	complete	the	rest	of	the	examples	in	this	book.	If	you
are	the	kind	of	person	who	learns	best	through	practical	examples,	your	next
step	is	to	continue	on	to	the	next	set	of	chapters,	where	we	will	introduce	you	to
MLlib,	the	machine	learning	library	designed	for	Spark.

As	you	become	a	seasoned	user	of	Spark	and	Scala	for	data	analysis,	it’s	likely
that	you	will	reach	a	point	where	you	begin	to	build	tools	and	libraries
designed	to	help	other	analysts	and	data	scientists	apply	Spark	to	solve	their
own	problems.	At	that	point	in	your	development,	it	would	be	helpful	to	pick
up	additional	books	on	Scala,	like	Programming	Scala	by	Dean	Wampler	and
Alex	Payne,	and	The	Scala	Cookbook	by	Alvin	Alexander	(both	from
O’Reilly).

http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920026914.do


Chapter	3.	Recommending	Music
and	the	Audioscrobbler	Data	Set
Sean	Owen

De	gustibus	non	est	disputandum.
(There’s	no	accounting	for	taste.)
Anonymous

When	somebody	asks	what	it	is	I	do	for	a	living,	the	direct	answer	of	“data
science”	or	“machine	learning”	sounds	impressive	but	usually	draws	a	blank
stare.	Fair	enough;	even	actual	data	scientists	seem	to	struggle	to	define	what
these	mean	—	storing	lots	of	data,	computing,	predicting	something?
Inevitably,	I	jump	straight	to	a	relatable	example:	“OK,	you	know	how	Amazon
will	tell	you	about	books	like	the	ones	you	bought?	Yes?	Yes!	It’s	like	that.”

Empirically,	the	recommender	engine	seems	to	be	an	example	of	large-scale
machine	learning	that	everyone	understands,	and	most	people	have	seen
Amazon’s.	It	is	a	common	denominator	because	recommender	engines	are
everywhere,	from	social	networks	to	video	sites	to	online	retailers.	We	can
also	directly	observe	them	in	action.	We’re	aware	that	a	computer	is	picking
tracks	to	play	on	Spotify,	in	much	the	same	way	we	don’t	necessarily	notice
that	Gmail	is	deciding	whether	inbound	email	is	spam.

The	output	of	a	recommender	is	more	intuitively	understandable	than	other
machine	learning	algorithms.	It’s	exciting,	even.	For	as	much	as	we	think	that
musical	taste	is	personal	and	inexplicable,	recommenders	do	a	surprisingly
good	job	of	identifying	tracks	we	didn’t	know	we	would	like.

Finally,	for	domains	like	music	or	movies	where	recommenders	are	usually
deployed,	it’s	comparatively	easy	to	reason	about	why	a	recommended	piece
of	music	fits	with	someone’s	listening	history.	Not	all	clustering	or
classification	algorithms	match	that	description.	For	example,	a	support	vector
machine	classifier	is	a	set	of	coefficients,	and	it’s	hard	even	for	practitioners	to
articulate	what	the	numbers	mean	when	they	make	predictions.

So,	it	seems	fitting	to	kick	off	the	next	three	chapters,	which	will	explore	key



machine	learning	algorithms	on	Spark,	with	a	chapter	built	around
recommender	engines,	and	recommending	music	in	particular.	It’s	an
accessible	way	to	introduce	real-world	use	of	Spark	and	MLlib,	and	some
basic	machine	learning	ideas	that	will	be	developed	in	subsequent	chapters.



Data	Set
This	example	will	use	a	data	set	published	by	Audioscrobbler.	Audioscrobbler
was	the	first	music	recommendation	system	for	last.fm,	one	of	the	first	internet
streaming	radio	sites,	founded	in	2002.	Audioscrobbler	provided	an	open	API
for	“scrobbling,”	or	recording	listeners’	song	plays.	last.fm	used	this
information	to	build	a	powerful	music	recommender	engine.	The	system
reached	millions	of	users	because	third-party	apps	and	sites	could	provide
listening	data	back	to	the	recommender	engine.

At	that	time,	research	on	recommender	engines	was	mostly	confined	to
learning	from	rating-like	data.	That	is,	recommenders	were	usually	viewed	as
tools	that	operated	on	input	like	“Bob	rates	Prince	3.5	stars.”

The	Audioscrobbler	data	set	is	interesting	because	it	merely	records	plays:
“Bob	played	a	Prince	track.”	A	play	carries	less	information	than	a	rating.	Just
because	Bob	played	the	track	doesn’t	mean	he	actually	liked	it.	You	or	I	may
occasionally	play	a	song	by	an	artist	we	don’t	care	for,	or	even	play	an	album
and	walk	out	of	the	room.

However,	listeners	rate	music	far	less	frequently	than	they	play	music.	A	data
set	like	this	is	therefore	much	larger,	covers	more	users	and	artists,	and
contains	more	total	information	than	a	rating	data	set,	even	if	each	individual
data	point	carries	less	information.	This	type	of	data	is	often	called	implicit
feedback	data	because	the	user-artist	connections	are	implied	as	a	side	effect	of
other	actions,	and	not	given	as	explicit	ratings	or	thumbs-up.

A	snapshot	of	a	data	set	distributed	by	last.fm	in	2005	can	be	found	online	as	a
compressed	archive.	Download	the	archive,	and	find	within	it	several	files.	The
main	data	set	is	in	the	user_artist_data.txt	file.	It	contains	about	141,000
unique	users,	and	1.6	million	unique	artists.	About	24.2	million	users’	plays	of
artists	are	recorded,	along	with	their	counts.

The	data	set	also	gives	the	names	of	each	artist	by	ID	in	the	artist_data.txt	file.
Note	that	when	plays	are	scrobbled,	the	client	application	submits	the	name	of
the	artist	being	played.	This	name	could	be	misspelled	or	nonstandard,	and	this
may	only	be	detected	later.	For	example,	“The	Smiths,”	“Smiths,	The,”	and	“the
smiths”	may	appear	as	distinct	artist	IDs	in	the	data	set	even	though	they	are

http://www.last.fm
https://bit.ly/1KiJdOR


plainly	the	same.	So,	the	data	set	also	includes	artist_alias.txt,	which	maps
artist	IDs	that	are	known	misspellings	or	variants	to	the	canonical	ID	of	that
artist.



The	Alternating	Least	Squares	Recommender
Algorithm
We	need	to	choose	a	recommender	algorithm	that	is	suitable	for	this	implicit
feedback	data.	The	data	set	consists	entirely	of	interactions	between	users	and
artists’	songs.	It	contains	no	information	about	the	users,	or	about	the	artists
other	than	their	names.	We	need	an	algorithm	that	learns	without	access	to	user
or	artist	attributes.	These	are	typically	called	collaborative	filtering	algorithms.
For	example,	deciding	that	two	users	might	share	similar	tastes	because	they
are	the	same	age	is	not	an	example	of	collaborative	filtering.	Deciding	that	two
users	might	both	like	the	same	song	because	they	play	many	other	same	songs
is	an	example.

This	data	set	looks	large	because	it	contains	tens	of	millions	of	play	counts.
But	in	a	different	sense,	it	is	small	and	skimpy,	because	it	is	sparse.	On
average,	each	user	has	played	songs	from	about	171	artists	—	out	of	1.6
million.	Some	users	have	listened	to	only	one	artist.	We	need	an	algorithm	that
can	provide	decent	recommendations	to	even	these	users.	After	all,	every
single	listener	must	have	started	with	just	one	play	at	some	point!

Finally,	we	need	an	algorithm	that	scales,	both	in	its	ability	to	build	large
models	and	to	create	recommendations	quickly.	Recommendations	are
typically	required	in	near	real	time	—	within	a	second,	not	tomorrow.

This	example	will	employ	a	member	of	a	broad	class	of	algorithms	called
latent-factor	models.	They	try	to	explain	observed	interactions	between	large
numbers	of	users	and	items	through	a	relatively	small	number	of	unobserved,
underlying	reasons.	It	is	analogous	to	explaining	why	millions	of	people	buy	a
particular	few	of	thousands	of	possible	albums	by	describing	users	and	albums
in	terms	of	tastes	for	perhaps	tens	of	genres	—	tastes	that	are	not	directly
observable	or	given	as	data.

For	example,	consider	a	customer	who	has	bought	albums	by	metal	bands
Megadeth	and	Pantera,	but	also	classical	composer	Mozart.	It	may	be	difficult
to	explain	why	exactly	these	albums	were	bought	and	nothing	else.	However,
it’s	probably	a	small	window	on	a	much	larger	set	of	tastes.	Maybe	the
customer	likes	a	coherent	spectrum	of	music	from	metal	to	progressive	rock

https://en.wikipedia.org/wiki/Collaborative_filtering
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to	classical.	That	explanation	is	simpler,	and	as	a	bonus,	suggests	many	other
albums	that	would	be	of	interest.	In	this	example,	“liking	metal,	progressive
rock,	and	classical”	are	three	latent	factors	that	could	explain	tens	of	thousands
of	individual	album	preferences.

More	specifically,	this	example	will	use	a	type	of	matrix	factorization	model.
Mathematically,	these	algorithms	treat	the	user	and	product	data	as	if	it	were	a
large	matrix	A,	where	the	entry	at	row	i	and	column	j	exists	if	user	i	has	played
artist	j.	A	is	sparse:	most	entries	of	A	are	0,	because	only	a	few	of	all	possible
user-artist	combinations	actually	appear	in	the	data.	They	factor	A	as	the	matrix
product	of	two	smaller	matrices,	X	and	Y.	They	are	very	skinny	—	both	have
many	rows	because	A	has	many	rows	and	columns,	but	both	have	just	a	few
columns	(k).	The	k	columns	correspond	to	the	latent	factors	that	are	being	used
to	explain	the	interaction	data.

The	factorization	can	only	be	approximate	because	k	is	small,	as	shown	in
Figure	3-1.

Figure	3-1.	Matrix	factorization

These	algorithms	are	sometimes	called	matrix	completion	algorithms,	because
the	original	matrix	A	may	be	quite	sparse,	but	the	product	XYT	is	dense.	Very

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization


few,	if	any,	entries	are	0,	and	therefore	the	model	is	only	an	approximation	to
A.	It	is	a	model	in	the	sense	that	it	produces	(“completes”)	a	value	for	even	the
many	entries	that	are	missing	(that	is,	0)	in	the	original	A.

This	is	a	case	where,	happily,	the	linear	algebra	maps	directly	and	elegantly	to
intuition.	These	two	matrices	contain	a	row	for	each	user	and	each	artist,
respectively.	The	rows	have	few	values	—	k.	Each	value	corresponds	to	a	latent
feature	in	the	model.	So	the	rows	express	how	much	users	and	artists	associate
with	these	k	latent	features,	which	might	correspond	to	tastes	or	genres.	And	it
is	simply	the	product	of	a	user-feature	and	feature-artist	matrix	that	yields	a
complete	estimation	of	the	entire,	dense	user-artist	interaction	matrix.	This
product	might	be	thought	of	as	mapping	items	to	their	attributes,	and	then
weighting	those	by	user	attributes.

The	bad	news	is	that	A	=	XYT	generally	has	no	exact	solution	at	all,	because	X
and	Y	aren’t	large	enough	(technically	speaking,	too	low	rank)	to	perfectly
represent	A.	This	is	actually	a	good	thing.	A	is	just	a	tiny	sample	of	all
interactions	that	could	happen.	In	a	way,	we	believe	A	is	a	terribly	spotty	and
therefore	hard-to-explain	view	of	a	simpler	underlying	reality	that	is	well
explained	by	just	some	small	number	of	factors,	k,	of	them.	Think	of	a	jigsaw
puzzle	depicting	a	cat.	The	final	puzzle	is	simple	to	describe:	a	cat.	When
you’re	holding	just	a	few	pieces,	however,	the	picture	you	see	is	quite	difficult
to	describe.

XYT	should	still	be	as	close	to	A	as	possible.	After	all,	it’s	all	we’ve	got	to	go
on.	It	will	not	and	should	not	reproduce	it	exactly.	The	bad	news	again	is	that
this	can’t	be	solved	directly	for	both	the	best	X	and	best	Y	at	the	same	time.	The
good	news	is	that	it’s	trivial	to	solve	for	the	best	X	if	Y	is	known,	and	vice
versa.	But	neither	is	known	beforehand!

Fortunately,	there	are	algorithms	that	can	escape	this	catch-22	and	find	a	decent
solution.	More	specifically	still,	the	example	in	this	chapter	will	use	the
Alternating	Least	Squares	(ALS)	algorithm	to	compute	X	and	Y.	This	type	of
approach	was	popularized	around	the	time	of	the	Netflix	Prize	by	papers	like
“Collaborative	Filtering	for	Implicit	Feedback	Datasets”	and	“Large-Scale
Parallel	Collaborative	Filtering	for	the	Netflix	Prize”.	In	fact,	Spark	MLlib’s
ALS	implementation	draws	on	ideas	from	both	of	these	papers.

Y	isn’t	known,	but	it	can	be	initialized	to	a	matrix	full	of	randomly	chosen	row
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vectors.	Then	simple	linear	algebra	gives	the	best	solution	for	X,	given	A	and
Y.	In	fact,	it’s	trivial	to	compute	each	row	i	of	X	separately	as	a	function	of	Y
and	of	one	row	of	A.	Because	it	can	be	done	separately,	it	can	be	done	in
parallel,	and	that	is	an	excellent	property	for	large-scale	computation:

AiY(YTY)–1	=	Xi
Equality	can’t	be	achieved	exactly,	so	in	fact	the	goal	is	to	minimize	|AiY(YTY)–
1	–	Xi|,	or	the	sum	of	squared	differences	between	the	two	matrices’	entries.
This	is	where	the	“least	squares”	in	the	name	comes	from.	In	practice,	this	is
never	solved	by	actually	computing	inverses	but	faster	and	more	directly	via
methods	like	the	QR	decomposition.	This	equation	simply	elaborates	on	the
theory	of	how	the	row	vector	is	computed.

The	same	thing	can	be	done	to	compute	each	Yj	from	X.	And	again,	to	compute
X	from	Y,	and	so	on.	This	is	where	the	“alternating”	part	comes	from.	There’s
just	one	small	problem:	Y	was	made	up,	and	random!	X	was	computed
optimally,	yes,	but	given	a	bogus	solution	for	Y.	Fortunately,	if	this	process	is
repeated,	X	and	Y	do	eventually	converge	to	decent	solutions.

When	used	to	factor	a	matrix	representing	implicit	data,	there	is	a	little	more
complexity	to	the	ALS	factorization.	It	is	not	factoring	the	input	matrix	A
directly,	but	a	matrix	P	of	0s	and	1s,	containing	1	where	A	contains	a	positive
value	and	0	elsewhere.	The	values	in	A	are	incorporated	later	as	weights.	This
detail	is	beyond	the	scope	of	this	book,	but	is	not	necessary	to	understand	how
to	use	the	algorithm.

Finally,	the	ALS	algorithm	can	take	advantage	of	the	sparsity	of	the	input	data
as	well.	This,	and	its	reliance	on	simple,	optimized	linear	algebra	and	its	data-
parallel	nature,	make	it	very	fast	at	large	scale.	This	is	much	of	the	reason	it	is
the	topic	of	this	chapter	—	that,	and	the	fact	that	ALS	is	the	only	recommender
algorithm	currently	implemented	in	Spark	MLlib!

https://en.wikipedia.org/wiki/QR_decomposition


Preparing	the	Data
First,	the	data	set’s	files	need	to	be	made	available.	Copy	all	three	data	files	into
HDFS.	This	chapter	will	assume	that	the	files	are	available	at	/user/ds/.	Start
spark-shell.	Note	that	this	computation	will	take	up	more	memory	than
simple	applications.	If	you	are	running	locally	rather	than	on	a	cluster,	for
example,	you	will	likely	need	to	specify	something	like	--driver-memory	4g
to	have	enough	memory	to	complete	these	computations.

The	first	step	in	building	a	model	is	to	understand	the	data	that	is	available,	and
parse	or	transform	it	into	forms	that	are	useful	for	analysis	in	Spark.

Spark	MLlib’s	ALS	implementation	does	not	strictly	require	numeric	IDs	for
users	and	items,	but	is	more	efficient	when	the	IDs	are	in	fact	representable	as
32-bit	integers.	It’s	advantageous	to	use	Int	to	represent	IDs,	but	this	would
mean	that	the	IDs	can’t	exceed	Int.MaxValue,	or	2147483647.	Does	this	data
set	conform	to	this	requirement	already?	Access	the	file	as	a	data	set	of
Strings	in	Spark	with	SparkSession’s	textFile	method:

val	rawUserArtistData	=

		spark.read.textFile("hdfs:///user/ds/user_artist_data.txt")

rawUserArtistData.take(5).foreach(println)

...

1000002	1	55

1000002	1000006	33

1000002	1000007	8

1000002	1000009	144

1000002	1000010	314

By	default,	the	data	set	will	contain	one	partition	for	each	HDFS	block.	Because
this	file	consumes	about	400	MB	on	HDFS,	it	will	split	into	about	three	to	six
partitions	given	typical	HDFS	block	sizes.	This	is	normally	fine,	but	machine
learning	tasks	like	ALS	are	likely	to	be	more	compute-intensive	than	simple
text	processing.	It	may	be	better	to	break	the	data	into	smaller	pieces	—	more
partitions	—	for	processing.	This	can	let	Spark	put	more	processor	cores	to
work	on	the	problem	at	once,	because	each	can	run	a	task	that	processes	one
partition	independently.	You	can	chain	a	call	to	.repartition(n)	after	reading
the	text	file	to	specify	a	different	and	larger	number	of	partitions.	You	might



set	this	higher	to	match	the	number	of	cores	in	your	cluster,	for	example.

Each	line	of	the	file	contains	a	user	ID,	an	artist	ID,	and	a	play	count,	separated
by	spaces.	To	compute	statistics	on	the	user	ID,	we	split	the	line	by	a	space
character,	and	parse	the	first	two	values	as	integers.	The	result	is	conceptually
two	“columns”:	a	user	ID	and	artist	ID	as	Ints.	It	makes	sense	to	transform	this
to	a	data	frame	with	columns	named	“user”	and	“artist,”	because	it	then
becomes	simple	to	compute	simple	statistics	like	the	maximum	and	minimum
of	both	columns:

val	userArtistDF	=	rawUserArtistData.map	{	line	=>

		val	Array(user,	artist,	_*)	=	line.split('	')	

		(user.toInt,	artist.toInt)

}.toDF("user",	"artist")

userArtistDF.agg(

		min("user"),	max("user"),	min("artist"),	max("artist")).show()

...

+---------+---------+-----------+-----------+

|min(user)|max(user)|min(artist)|max(artist)|

+---------+---------+-----------+-----------+

|							90|		2443548|										1|			10794401|

+---------+---------+-----------+-----------+

Match	and	discard	remaining	tokens.
The	maximum	user	and	artist	IDs	are	2443548	and	10794401,	respectively
(and	their	minimums	are	90	and	1;	no	negative	values).	These	are	comfortably
smaller	than	2147483647.	No	additional	transformation	will	be	necessary	to
use	these	IDs.

It	will	be	useful	later	in	this	example	to	know	the	artist	names	corresponding	to
the	opaque	numeric	IDs.	This	information	is	contained	in	artist_data.txt.	This
time,	it	contains	the	artist	ID	and	name	separated	by	a	tab.	However,	a
straightforward	parsing	of	the	file	into	(Int,String)	tuples	will	fail:

val	rawArtistData	=	spark.read.textFile("hdfs:///user/ds/artist_data.txt")

rawArtistData.map	{	line	=>

		val	(id,	name)	=	line.span(_	!=	'\t')	

		(id.toInt,	name.trim)

}.count()	

...

java.lang.NumberFormatException:	For	input	string:	"Aya	Hisakawa"



Split	line	at	first	tab.

Trigger	parsing	with	.count;	this	will	fail!

Here,	span()	splits	the	line	by	its	first	tab	by	consuming	characters	that	aren’t
tabs.	It	then	parses	the	first	portion	as	the	numeric	artist	ID,	and	retains	the	rest
as	the	artist	name	(with	whitespace	—	the	tab	—	removed).	A	small	number	of
the	lines	appear	to	be	corrupted.	They	don’t	contain	a	tab	or	they	inadvertently
include	a	newline	character.	These	lines	cause	a	NumberFormatException,	and
ideally,	they	would	not	map	to	anything	at	all.

However,	the	map()	function	must	return	exactly	one	value	for	every	input,	so
it	can’t	be	used.	It’s	possible	to	remove	the	lines	that	don’t	parse	with	filter(),
but	this	would	duplicate	the	parsing	logic.	The	flatMap()	function	is
appropriate	when	each	element	maps	to	zero,	one,	or	more	results	because	it
simply	“flattens”	these	collections	of	zero	or	more	results	from	each	input	into
one	big	data	set.	It	works	with	Scala	Collections,	but	also	with	Scala’s	Option
class.	Option	represents	a	value	that	might	only	optionally	exist.	It	is	like	a
simple	collection	of	1	or	0	values,	corresponding	to	its	Some	and	None
subclasses.	So,	while	the	function	in	flatMap	in	the	following	code	could	just
as	easily	return	an	empty	List	or	a	List	of	one	element,	this	is	a	reasonable
place	to	instead	use	the	simpler	and	clearer	Some	and	None:

val	artistByID	=	rawArtistData.flatMap	{	line	=>

		val	(id,	name)	=	line.span(_	!=	'\t')

		if	(name.isEmpty)	{

				None

		}	else	{

				try	{

						Some((id.toInt,	name.trim))

				}	catch	{

						case	_:	NumberFormatException	=>	None

				}

		}

}.toDF("id",	"name")

This	gives	a	data	frame	with	the	artist	ID	and	name	as	columns	“id”	and
“name”.

The	artist_alias.txt	file	maps	artist	IDs	that	may	be	misspelled	or	nonstandard



to	the	ID	of	the	artist’s	canonical	name.	It	contains	two	IDs	per	line,	separated
by	a	tab.	This	file	is	relatively	small,	containing	about	200,000	entries.	It	will
be	useful	to	collect	it	as	a	Map,	mapping	“bad”	artist	IDs	to	“good”	ones,	instead
of	just	using	it	as	a	data	set	of	pairs	of	artist	IDs.	Again,	some	lines	are	missing
the	first	artist	ID	for	some	reason,	and	are	skipped:

val	rawArtistAlias	=	spark.read.textFile("hdfs:///user/ds/artist_alias.txt")

val	artistAlias	=	rawArtistAlias.flatMap	{	line	=>

		val	Array(artist,	alias)	=	line.split('\t')

		if	(artist.isEmpty)	{

				None

		}	else	{

				Some((artist.toInt,	alias.toInt))

		}

}.collect().toMap

artistAlias.head

...

(1208690,1003926)

The	first	entry,	for	instance,	maps	ID	1208690	to	1003926.	We	can	look	these
up	from	the	DataFrame	containing	artist	names:

artistByID.filter($"id"	isin	(1208690,	1003926)).show()

...

+-------+----------------+

|					id|												name|

+-------+----------------+

|1208690|Collective	Souls|

|1003926|	Collective	Soul|

+-------+----------------+

This	entry	evidently	maps	“Collective	Souls”	to	“Collective	Soul,”	which	is	in
fact	the	correct	name	for	the	band.



Building	a	First	Model
Although	the	data	set	is	in	nearly	the	right	form	for	use	with	Spark	MLlib’s
ALS	implementation,	it	requires	a	small	extra	transformation.	The	aliases	data
set	should	be	applied	to	convert	all	artist	IDs	to	a	canonical	ID,	if	a	different
canonical	ID	exists.	Aside	from	that,	all	that’s	required	is	to	parse	the	lines	of
input	into	suitable	columns.	A	helper	function	is	defined	to	do	this,	for	later
reuse.

import	org.apache.spark.sql._

import	org.apache.spark.broadcast._

def	buildCounts(

				rawUserArtistData:	Dataset[String],

				bArtistAlias:	Broadcast[Map[Int,Int]]):	DataFrame	=	{

		rawUserArtistData.map	{	line	=>

				val	Array(userID,	artistID,	count)	=	line.split('	').map(_.toInt)

				val	finalArtistID	=

						bArtistAlias.value.getOrElse(artistID,	artistID)	

				(userID,	finalArtistID,	count)

		}.toDF("user",	"artist",	"count")

}

val	bArtistAlias	=	spark.sparkContext.broadcast(artistAlias)

val	trainData	=	buildCounts(rawUserArtistData,	bArtistAlias)

trainData.cache()

Get	artist’s	alias	if	it	exists,	otherwise	get	original	artist.
The	artistAlias	mapping	created	earlier	could	be	referenced	directly	in	a
map()	function	even	though	it	is	a	local	Map	on	the	driver.	This	works,	because
it	would	be	copied	automatically	with	every	task.	However,	it	is	not	tiny,
consuming	about	15	megabytes	in	memory	and	at	least	several	megabytes	in
serialized	form.	Because	many	tasks	execute	in	one	JVM,	it	is	wasteful	to	send
and	store	so	many	copies	of	the	data.

Instead,	we	create	a	broadcast	variable	called	bArtistAlias	for	artistAlias.
This	makes	Spark	send	and	hold	in	memory	just	one	copy	for	each	executor	in
the	cluster.	When	there	are	thousands	of	tasks	and	many	execute	in	parallel	on
each	executor,	this	can	save	significant	network	traffic	and	memory.

https://bit.ly/1ALqojd


BROADCAST	VARIABLES

When	Spark	runs	a	stage,	it	creates	a	binary	representation	of	all	the	information	needed	to	run	tasks
in	that	stage;	this	is	called	the	closure	of	the	function	that	needs	to	be	executed.	This	closure	includes
all	the	data	structures	on	the	driver	referenced	in	the	function.	Spark	distributes	it	with	every	task	that
is	sent	to	an	executor	on	the	cluster.

Broadcast	variables	are	useful	when	many	tasks	need	access	to	the	same	(immutable)	data	structure.
They	extend	normal	handling	of	task	closures	to	enable:

Caching	data	as	raw	Java	objects	on	each	executor,	so	they	need	not	be	deserialized	for	each
task

Caching	data	across	multiple	jobs,	stages,	and	tasks

For	example,	consider	a	natural	language	processing	application	that	requires	a	large	dictionary	of
English	words,	and	has	a	score	function	that	accepts	a	line	of	input	and	dictionary	of	words.
Broadcasting	the	dictionary	means	it	is	transferred	to	each	executor	only	once:

val	dict:	Seq[String]	=	...

val	bDict	=	spark.sparkContext.broadcast(dict)

def	query(path:	String)	=	{

		spark.read.textFile(path).map(score(_,	bDict.value))

		...

}

Although	it’s	beyond	the	scope	of	this	book,	DataFrame	operations	can	at	times	also	automatically
take	advantage	of	broadcasts	when	performing	joins	between	a	large	and	small	table.	Just
broadcasting	the	small	table	is	advantageous	sometimes.	This	is	called	a	broadcast	hash	join.

The	call	to	cache()	suggests	to	Spark	that	this	DataFrame	should	be
temporarily	stored	after	being	computed,	and	furthermore,	kept	in	memory	in
the	cluster.	This	is	helpful	because	the	ALS	algorithm	is	iterative,	and	will
typically	need	to	access	this	data	10	times	or	more.	Without	this,	the	DataFrame
could	be	repeatedly	recomputed	from	the	original	data	each	time	it	is	accessed!
The	Storage	tab	in	the	Spark	UI	will	show	how	much	of	the	DataFrame	is
cached	and	how	much	memory	it	uses,	as	shown	in	Figure	3-2.	This	one
consumes	about	120	MB	across	the	cluster.

Figure	3-2.	Storage	tab	in	the	Spark	UI,	showing	cached	DataFrame	memory	usage



Note	that	the	label	“Deserialized”	in	the	UI	above	is	actually	only	relevant	for
RDDs,	where	“Serialized”	means	data	are	stored	in	memory	not	as	objects,	but
as	serialized	bytes.	However,	Dataset	and	DataFrame	instances	like	this	one
perform	their	own	“encoding”	of	common	data	types	in	memory	separately.

Actually,	120	MB	is	surprisingly	small.	Given	that	there	are	about	24	million
plays	stored	here,	a	quick	back-of-the-envelope	calculation	suggests	that	this
would	mean	that	each	user-artist-count	entry	consumes	only	5	bytes	on
average.	However,	the	three	32-bit	integers	alone	ought	to	consume	12	bytes.
This	is	one	of	the	advantages	of	a	DataFrame.	Because	the	types	of	data	stored
are	primitive	32-bit	integers,	their	representation	can	be	optimized	in	memory
internally.	In	the	original	RDD-based	API	for	ALS,	which	would	have	required
storing	a	collection	of	24	million	Rating	objects	in	memory,	the	RDD	would
have	consumed	over	900	MB.

Finally,	we	can	build	a	model:

import	org.apache.spark.ml.recommendation._

import	scala.util.Random

val	model	=	new	ALS().

				setSeed(Random.nextLong()).	

				setImplicitPrefs(true).

				setRank(10).

				setRegParam(0.01).

				setAlpha(1.0).

				setMaxIter(5).

				setUserCol("user").

				setItemCol("artist").

				setRatingCol("count").

				setPredictionCol("prediction").

				fit(trainData)

Use	random	seed
This	constructs	model	as	an	ALSModel	with	some	default	configuration.	The
operation	will	likely	take	minutes	or	more	depending	on	your	cluster.
Compared	to	some	machine	learning	models,	whose	final	form	may	consist	of
just	a	few	parameters	or	coefficients,	this	type	of	model	is	huge.	It	contains	a
feature	vector	of	10	values	for	each	user	and	product	in	the	model,	and	in	this
case	there	are	more	than	1.7	million	of	them.	The	model	contains	these	large



user-feature	and	product-feature	matrices	as	DataFrames	of	their	own.

The	values	in	your	results	may	be	somewhat	different.	The	final	model
depends	on	a	randomly	chosen	initial	set	of	feature	vectors.	The	default
behavior	of	this	and	other	components	in	MLlib,	however,	is	to	use	the	same
set	of	random	choices	every	time	by	defaulting	to	a	fixed	seed.	This	is	unlike
other	libraries,	where	behavior	of	random	elements	is	typically	not	fixed	by
default.	So,	here	and	elsewhere,	a	random	seed	is	set	with
setSeed(Random.nextLong()).

To	see	some	feature	vectors,	try	the	following,	which	displays	just	one	row
and	does	not	truncate	the	wide	display	of	the	feature	vector:

model.userFactors.show(1,	truncate	=	false)

...

+---+-----------------------------------------------	...

|id	|features																																								...

+---+-----------------------------------------------	...

|90	|[-0.2738046,	0.03154172,	1.046261,	-0.52314466,	...

+---+-----------------------------------------------	...

The	other	methods	invoked	on	ALS,	like	setAlpha,	set	hyperparameters	whose
value	can	affect	the	quality	of	the	recommendations	that	the	model	makes.
These	will	be	explained	later.	The	more	important	first	question	is,	is	the
model	any	good?	Does	it	produce	good	recommendations?



Spot	Checking	Recommendations
We	should	first	see	if	the	artist	recommendations	make	any	intuitive	sense,	by
examining	a	user,	plays,	and	recommendations	for	that	user.	Take,	for
example,	user	2093760.	First,	let’s	look	at	his	or	her	plays	to	get	a	sense	of	the
person’s	tastes.	Extract	the	IDs	of	artists	that	this	user	has	listened	to	and	print
their	names.	This	means	searching	the	input	for	artist	IDs	played	by	this	user,
and	then	filtering	the	set	of	artists	by	these	IDs	in	order	to	print	the	names	in
order:

val	userID	=	2093760

val	existingArtistIDs	=	trainData.

		filter($"user"	===	userID).	

		select("artist").as[Int].collect()	

artistByID.filter($"id"	isin	(existingArtistIDs:_*)).show()	

...

+-------+---------------+

|					id|											name|

+-------+---------------+

|			1180|					David	Gray|

|				378|		Blackalicious|

|				813|					Jurassic	5|

|1255340|The	Saw	Doctors|

|				942|									Xzibit|

+-------+---------------+

Find	lines	whose	user	is	2093760.

Collect	data	set	of	Int	artist	ID.

Filter	in	those	artists;	note	:_*	varargs	syntax.

The	artists	look	like	a	mix	of	mainstream	pop	and	hip-hop.	A	Jurassic	5	fan?
Remember,	it’s	2005.	In	case	you’re	wondering,	the	Saw	Doctors	are	a	very
Irish	rock	band	popular	in	Ireland.

The	bad	news	is	that,	surprisingly,	ALSModel	does	not	have	a	method	that
directly	computes	top	recommendations	for	a	user.	Its	purpose	is	to	estimate	a



user ’s	preference	for	any	given	artist.	Spark	2.2	will	add	a	recommendAll
method	to	address	this,	but	this	has	not	been	released	at	the	time	fo	this	writing.
This	can	be	used	to	score	all	artists	for	a	user	and	then	return	the	few	with	the
highest	predicted	score:

def	makeRecommendations(

				model:	ALSModel,

				userID:	Int,

				howMany:	Int):	DataFrame	=	{

		val	toRecommend	=	model.itemFactors.

				select($"id".as("artist")).

				withColumn("user",	lit(userID))	

		model.transform(toRecommend).

				select("artist",	"prediction").

				orderBy($"prediction".desc).

				limit(howMany)	

}

Select	all	artist	IDs	and	pair	with	target	user	ID.

Score	all	artists,	return	top	by	score.
Note	that	this	method	does	not	bother	to	filter	out	the	IDs	of	artists	the	user	has
already	listened	to.	Although	this	is	common,	it’s	not	always	desirable,	and
won’t	matter	for	our	purposes	anyway.

Now,	it’s	simple	to	make	recommendations,	though	computing	them	this	way
will	take	a	few	moments.	It’s	suitable	for	batch	scoring	but	not	real-time	use
cases:

val	topRecommendations	=	makeRecommendations(model,	userID,	5)

topRecommendations.show()

...

+-------+-----------+

|	artist|	prediction|

+-------+-----------+

|			2814|0.030201003|

|1300642|0.029290354|

|1001819|0.029130368|

|1007614|0.028773561|

|1037970|0.028646756|

+-------+-----------+

The	results	contain	an	artist	ID	of	course,	and	also	a	“prediction.”	For	this	type



of	ALS	algorithm,	the	prediction	is	an	opaque	value	normally	between	0	and	1,
where	higher	values	mean	a	better	recommendation.	It	is	not	a	probability,	but
can	be	thought	of	as	an	estimate	of	a	0/1	value	indicating	whether	the	user
won’t	or	will	interact	with	the	artist,	respectively.

After	extracting	the	artist	IDs	for	the	recommendations,	we	can	look	up	artist
names	in	a	similar	way:

val	recommendedArtistIDs	=

		topRecommendations.select("artist").as[Int].collect()

artistByID.filter($"id"	isin	(recommendedArtistIDs:_*)).show()

...

+-------+----------+

|					id|						name|

+-------+----------+

|			2814|			50	Cent|

|1007614|					Jay-Z|

|1037970|Kanye	West|

|1001819|						2Pac|

|1300642|		The	Game|

+-------+----------+

The	result	is	all	hip-hop.	This	doesn’t	look	like	a	great	set	of
recommendations,	at	first	glance.	While	these	are	generally	popular	artists,
they	don’t	appear	to	be	personalized	to	this	user ’s	listening	habits.



Evaluating	Recommendation	Quality
Of	course,	that’s	just	one	subjective	judgment	about	one	user ’s	results.	It’s	hard
for	anyone	but	that	user	to	quantify	how	good	the	recommendations	are.
Moreover,	it’s	infeasible	to	have	any	human	manually	score	even	a	small
sample	of	the	output	to	evaluate	the	results.

It’s	reasonable	to	assume	that	users	tend	to	play	songs	from	artists	who	are
appealing,	and	not	play	songs	from	artists	who	aren’t	appealing.	So,	the	plays
for	a	user	give	a	partial	picture	of	“good”	and	“bad”	artist	recommendations.
This	is	a	problematic	assumption	but	about	the	best	that	can	be	done	without
any	other	data.	For	example,	presumably	user	2093760	likes	many	more	artists
than	the	5	listed	previously,	and	among	the	1.7	million	other	artists	not	played,
a	few	are	of	interest	and	not	all	are	“bad”	recommendations.

What	if	a	recommender	were	evaluated	on	its	ability	to	rank	good	artists	high
in	a	list	of	recommendations?	This	is	one	of	several	generic	metrics	that	can
be	applied	to	a	system	that	ranks	things,	like	a	recommender.	The	problem	is
that	“good”	is	defined	as	“artists	the	user	has	listened	to,”	and	the
recommender	system	has	already	received	all	of	this	information	as	input.	It
could	trivially	return	the	user ’s	previously	listened-to	artists	as	top
recommendations	and	score	perfectly.	But	this	is	not	useful,	especially	because
the	recommender ’s	role	is	to	recommend	artists	that	the	user	has	never	listened
to.

To	make	this	meaningful,	some	of	the	artist	play	data	can	be	set	aside	and
hidden	from	the	ALS	model-building	process.	Then,	this	held-out	data	can	be
interpreted	as	a	collection	of	good	recommendations	for	each	user	but	one	that
the	recommender	has	not	already	been	given.	The	recommender	is	asked	to
rank	all	items	in	the	model,	and	the	ranks	of	the	held-out	artists	are	examined.
Ideally,	the	recommender	places	all	of	them	at	or	near	the	top	of	the	list.

We	can	then	compute	the	recommender ’s	score	by	comparing	all	held-out
artists’	ranks	to	the	rest.	(In	practice,	we	compute	this	by	examining	only	a
sample	of	all	such	pairs,	because	a	potentially	huge	number	of	such	pairs	may
exist.)	The	fraction	of	pairs	where	the	held-out	artist	is	ranked	higher	is	its
score.	A	score	of	1.0	is	perfect,	0.0	is	the	worst	possible	score,	and	0.5	is	the



expected	value	achieved	from	randomly	ranking	artists.

This	metric	is	directly	related	to	an	information	retrieval	concept	called	the
receiver	operating	characteristic	(ROC)	curve.	The	metric	in	the	preceding
paragraph	equals	the	area	under	this	ROC	curve,	and	is	indeed	known	as	AUC,
or	Area	Under	the	Curve.	AUC	may	be	viewed	as	the	probability	that	a
randomly	chosen	good	recommendation	ranks	above	a	randomly	chosen	bad
recommendation.

The	AUC	metric	is	also	used	in	the	evaluation	of	classifiers.	It	is	implemented,
along	with	related	methods,	in	the	MLlib	class	BinaryClassificationMetrics.
For	recommenders,	we	will	compute	AUC	per	user	and	average	the	result.	The
resulting	metric	is	slightly	different,	and	might	be	called	“mean	AUC.”	We	will
implement	this,	because	it	is	not	(quite)	implemented	in	Spark.

Other	evaluation	metrics	that	are	relevant	to	systems	that	rank	things	are
implemented	in	RankingMetrics.	These	include	metrics	like	precision,	recall,
and	mean	average	precision	(MAP).	MAP	is	also	frequently	used	and	focuses
more	narrowly	on	the	quality	of	the	top	recommendations.	However,	AUC	will
be	used	here	as	a	common	and	broad	measure	of	the	quality	of	the	entire
model	output.

In	fact,	the	process	of	holding	out	some	data	to	select	a	model	and	evaluate	its
accuracy	is	common	practice	in	all	of	machine	learning.	Typically,	data	is
divided	into	three	subsets:	training,	cross-validation	(CV),	and	test	sets.	For
simplicity	in	this	initial	example,	only	two	sets	will	be	used:	training	and	CV.
This	will	be	sufficient	to	choose	a	model.	In	Chapter	4,	this	idea	will	be
extended	to	include	the	test	set.

https://bit.ly/18sUUQK
https://bit.ly/1ALr1cG


Computing	AUC
An	implementation	of	mean	AUC	is	provided	in	the	source	code
accompanying	this	book.	It	is	complex	and	not	reproduced	here,	but	is
explained	in	some	detail	in	comments	in	the	source	code.	It	accepts	the	CV	set
as	the	“positive”	or	“good”	artists	for	each	user,	and	a	prediction	function.
This	function	translates	a	data	frame	containing	each	user-artist	pair	into	a	data
frame	that	also	contains	its	estimated	strength	of	interaction	as	a	“prediction,”	a
number	wherein	higher	values	mean	higher	rank	in	the	recommendations.

In	order	to	use	it,	we	must	split	the	input	data	into	a	training	and	CV	set.	The
ALS	model	will	be	trained	on	the	training	data	set	only,	and	the	CV	set	will	be
used	to	evaluate	the	model.	Here,	90%	of	the	data	is	used	for	training	and	the
remaining	10%	for	cross-validation:

def	areaUnderCurve(

				positiveData:	DataFrame,

				bAllArtistIDs:	Broadcast[Array[Int]],

				predictFunction:	(DataFrame	=>	DataFrame)):	Double	=	{

		...

}

val	allData	=	buildCounts(rawUserArtistData,	bArtistAlias)	

val	Array(trainData,	cvData)	=	allData.randomSplit(Array(0.9,	0.1))

trainData.cache()

cvData.cache()

val	allArtistIDs	=	allData.select("artist").as[Int].distinct().collect()	

val	bAllArtistIDs	=	spark.sparkContext.broadcast(allArtistIDs)

val	model	=	new	ALS().

				setSeed(Random.nextLong()).

				setImplicitPrefs(true).

				setRank(10).setRegParam(0.01).setAlpha(1.0).setMaxIter(5).

				setUserCol("user").setItemCol("artist").

				setRatingCol("count").setPredictionCol("prediction").

				fit(trainData)

areaUnderCurve(cvData,	bAllArtistIDs,	model.transform)

Note	that	this	function	is	defined	above.

Remove	duplicates,	and	collect	to	driver.
Note	that	areaUnderCurve()	accepts	a	function	as	its	third	argument.	Here,	the



transform	method	from	ALSModel	is	passed	in,	but	it	will	shortly	be	swapped
out	for	an	alternative.

The	result	is	about	0.879.	Is	this	good?	It	is	certainly	higher	than	the	0.5	that	is
expected	from	making	recommendations	randomly,	and	it’s	close	to	1.0,	which
is	the	maximum	possible	score.	Generally,	an	AUC	over	0.9	would	be
considered	high.

But	is	it	an	accurate	evaluation?	This	evaluation	could	be	repeated	with	a
different	90%	as	the	training	set.	The	resulting	AUC	values’	average	might	be
a	better	estimate	of	the	algorithm’s	performance	on	the	data	set.	In	fact,	one
common	practice	is	to	divide	the	data	into	k	subsets	of	similar	size,	use	k	–	1
subsets	together	for	training,	and	evaluate	on	the	remaining	subset.	We	can
repeat	this	k	times,	using	a	different	set	of	subsets	each	time.	This	is	called	k-
fold	cross-validation.	This	won’t	be	implemented	in	examples	here,	for
simplicity,	but	some	support	for	this	technique	exists	in	MLlib	in	its
CrossValidator	API.	The	validation	API	will	be	revisited	in	Chapter	4.

It’s	helpful	to	benchmark	this	against	a	simpler	approach.	For	example,
consider	recommending	the	globally	most-played	artists	to	every	user.	This	is
not	personalized,	but	it	is	simple	and	may	be	effective.	Define	this	simple
prediction	function	and	evaluate	its	AUC	score:

def	predictMostListened(train:	DataFrame)(allData:	DataFrame)	=	{

		val	listenCounts	=	train.

				groupBy("artist").

				agg(sum("count").as("prediction")).

				select("artist",	"prediction")

		allData.

				join(listenCounts,	Seq("artist"),	"left_outer").

				select("user",	"artist",	"prediction")

}

areaUnderCurve(cvData,	bAllArtistIDs,	predictMostListened(trainData))

This	is	another	interesting	demonstration	of	Scala	syntax,	where	the	function
appears	to	be	defined	to	take	two	lists	of	arguments.	Calling	the	function	and
supplying	the	first	argument	creates	a	partially	applied	function,	which	itself
takes	an	argument	(allData)	in	order	to	return	predictions.	The	result	of
predictMostListened(trainData)	is	a	function.

https://bit.ly/1BVTEa9


The	result	is	also	about	0.880.	This	suggests	that	nonpersonalized
recommendations	are	already	fairly	effective	according	to	this	metric.
However,	we’d	expect	the	“personalized”	recommendations	to	score	better	in
comparison.	Clearly,	the	model	needs	some	tuning.	Can	it	be	made	better?



Hyperparameter	Selection
So	far,	the	hyperparameter	values	used	to	build	the	ALSModel	were	simply
given	without	comment.	They	are	not	learned	by	the	algorithm	and	must	be
chosen	by	the	caller.	The	configured	hyperparameters	were:

setRank(10)

The	number	of	latent	factors	in	the	model,	or	equivalently,	the	number	of
columns	k	in	the	user-feature	and	product-feature	matrices.	In	nontrivial
cases,	this	is	also	their	rank.

setMaxIter(5)

The	number	of	iterations	that	the	factorization	runs.	More	iterations	take
more	time	but	may	produce	a	better	factorization.

setRegParam(0.01)

A	standard	overfitting	parameter,	also	usually	called	lambda.	Higher
values	resist	overfitting,	but	values	that	are	too	high	hurt	the
factorization’s	accuracy.

setAlpha(1.0)

Controls	the	relative	weight	of	observed	versus	unobserved	user-product
interactions	in	the	factorization.

rank,	regParam,	and	alpha	can	be	considered	hyperparameters	to	the	model.
(maxIter	is	more	of	a	constraint	on	resources	used	in	the	factorization.)	These
are	not	values	that	end	up	in	the	matrices	inside	the	ALSModel	—	those	are
simply	its	parameters	and	are	chosen	by	the	algorithm.	These	hyperparameters
are	instead	parameters	to	the	process	of	building	itself.

The	values	used	in	the	preceding	list	are	not	necessarily	optimal.	Choosing
good	hyperparameter	values	is	a	common	problem	in	machine	learning.	The
most	basic	way	to	choose	values	is	to	simply	try	combinations	of	values	and
evaluate	a	metric	for	each	of	them,	and	choose	the	combination	that	produces
the	best	value	of	the	metric.

In	the	following	example,	eight	possible	combinations	are	tried:	rank	=	5	or
30,	regParam	=	4.0	or	0.0001,	and	alpha	=	1.0	or	40.0.	These	values	are	still



something	of	a	guess,	but	are	chosen	to	cover	a	broad	range	of	parameter
values.	The	results	are	printed	in	order	by	top	AUC	score:

val	evaluations	=

		for	(rank					<-	Seq(5,		30);

							regParam	<-	Seq(4.0,	0.0001);

							alpha				<-	Seq(1.0,	40.0))	

				yield	{

						val	model	=	new	ALS().

								setSeed(Random.nextLong()).

								setImplicitPrefs(true).

								setRank(rank).setRegParam(regParam).

								setAlpha(alpha).setMaxIter(20).

								setUserCol("user").setItemCol("artist").

								setRatingCol("count").setPredictionCol("prediction").

								fit(trainData)

						val	auc	=	areaUnderCurve(cvData,	bAllArtistIDs,	model.transform)

						model.userFactors.unpersist()	

						model.itemFactors.unpersist()

						(auc,	(rank,	regParam,	alpha))

				}

evaluations.sorted.reverse.foreach(println)	

...

(0.8928367485129145,(30,4.0,40.0))

(0.891835487024326,(30,1.0E-4,40.0))

(0.8912376926662007,(30,4.0,1.0))

(0.889240668173946,(5,4.0,40.0))

(0.8886268430389741,(5,4.0,1.0))

(0.8883278461068959,(5,1.0E-4,40.0))

(0.8825350012228627,(5,1.0E-4,1.0))

(0.8770527940660278,(30,1.0E-4,1.0))

Read	as	a	triply	nested	for	loop.

Free	up	model	resources	immediately.

Sort	by	first	value	(AUC),	descending,	and	print.

The	for	syntax	here	is	a	way	to	write	nested	loops	in	Scala.	It	is	like	a	loop	over	alpha,	inside
a	loop	over	regParam,	inside	a	loop	over	rank.



The	differences	are	small	in	absolute	terms,	but	are	still	somewhat	significant
for	AUC	values.	Interestingly,	the	parameter	alpha	seems	consistently	better	at
40	than	1.	(For	the	curious,	40	was	a	value	proposed	as	a	default	in	one	of	the
original	ALS	papers	mentioned	earlier.)	This	can	be	interpreted	as	indicating
that	the	model	is	better	off	focusing	far	more	on	what	the	user	did	listen	to	than
what	he	or	she	did	not	listen	to.

A	higher	regParam	looks	better	too.	This	suggests	the	model	is	somewhat
susceptible	to	overfitting,	and	so	needs	a	higher	regParam	to	resist	trying	to	fit
the	sparse	input	given	from	each	user	too	exactly.	Overfitting	will	be	revisited
in	more	detail	in	Chapter	4.

As	expected,	5	features	is	pretty	low	for	a	model	of	this	size,	and
underperforms	the	model	that	uses	30	features	to	explain	tastes.	It’s	possible
that	the	best	number	of	features	is	actually	higher	than	30,	and	that	these	values
are	alike	in	being	too	small.

Of	course,	this	process	can	be	repeated	for	different	ranges	of	values	or	more
values.	It	is	a	brute-force	means	of	choosing	hyperparameters.	However,	in	a
world	where	clusters	with	terabytes	of	memory	and	hundreds	of	cores	are	not
uncommon,	and	with	frameworks	like	Spark	that	can	exploit	parallelism	and
memory	for	speed,	it	becomes	quite	feasible.

It	is	not	strictly	required	to	understand	what	the	hyperparameters	mean,
although	it	is	helpful	to	know	what	normal	ranges	of	values	are	like	in	order	to
start	the	search	over	a	parameter	space	that	is	neither	too	large	nor	too	tiny.

This	was	a	fairly	manual	way	to	loop	over	hyperparameters,	build	models,	and
evaluate	them.	In	Chapter	4,	after	learning	more	about	the	Spark	ML	API,	we’ll
find	that	there	is	a	more	automated	way	to	compute	this	using	Pipelines	and
TrainValidationSplit.



Making	Recommendations
Proceeding	for	the	moment	with	the	best	set	of	hyperparameters,	what	does	the
new	model	recommend	for	user	2093760?

+-----------+

|							name|

+-----------+

|		[unknown]|

|The	Beatles|

|					Eminem|

|									U2|

|		Green	Day|

+-----------+

Anecdotally,	this	makes	a	bit	more	sense	for	this	user,	being	dominated	by	pop
rock	instead	of	all	hip-hop.	[unknown]	is	plainly	not	an	artist.	Querying	the
original	data	set	reveals	that	it	occurs	429,447	times,	putting	it	nearly	in	the	top
100!	This	is	some	default	value	for	plays	without	an	artist,	maybe	supplied	by	a
certain	scrobbling	client.	It	is	not	useful	information	and	we	should	discard	it
from	the	input	before	starting	again.	It	is	an	example	of	how	the	practice	of
data	science	is	often	iterative,	with	discoveries	about	the	data	occurring	at
every	stage.

This	model	can	be	used	to	make	recommendations	for	all	users.	This	could	be
useful	in	a	batch	process	that	recomputes	a	model	and	recommendations	for
users	every	hour	or	even	less,	depending	on	the	size	of	the	data	and	speed	of
the	cluster.

At	the	moment,	however,	Spark	MLlib’s	ALS	implementation	does	not	support
a	method	to	recommend	to	all	users.	It	is	possible	to	recommend	to	one	user	at
a	time,	as	shown	above,	although	each	will	launch	a	short-lived	distributed	job
that	takes	a	few	seconds.	This	may	be	suitable	for	rapidly	recomputing
recommendations	for	small	groups	of	users.	Here,	recommendations	are	made
to	100	users	taken	from	the	data	and	printed:

val	someUsers	=	allData.select("user").as[Int].distinct().take(100)	

val	someRecommendations	=

		someUsers.map(userID	=>	(userID,	makeRecommendations(model,	userID,	5)))	

someRecommendations.foreach	{	case	(userID,	recsDF)	=>

		val	recommendedArtists	=	recsDF.select("artist").as[Int].collect()

		println(s"$userID	->	${recommendedArtists.mkString(",	")}")	



}

...

1000190	->	6694932,	435,	1005820,	58,	1244362

1001043	->	1854,	4267,	1006016,	4468,	1274

1001129	->	234,	1411,	1307,	189,	121

...

Copy	100	(distinct)	users	to	the	driver.

map()	is	a	local	Scala	operation	here.

mkString	joins	a	collection	to	a	string	with	a	delimiter.

Here,	the	recommendations	are	just	printed.	They	could	just	as	easily	be
written	to	an	external	store	like	HBase,	which	provides	fast	lookup	at	runtime.

Interestingly,	this	entire	process	could	also	be	used	to	recommend	users	to
artists.	This	could	be	used	to	answer	questions	like	“Which	100	users	are	most
likely	to	be	interested	in	the	new	album	by	artist	X?”	Doing	so	would	only
require	swapping	the	user	and	artist	field	when	parsing	the	input:

rawArtistData.map	{	line	=>

		val	(id,	name)	=	line.span(_	!=	'\t')

		(name.trim,	id.int)

}

https://hbase.apache.org


Where	to	Go	from	Here
Naturally,	it’s	possible	to	spend	more	time	tuning	the	model	parameters,	and
finding	and	fixing	anomalies	in	the	input,	like	the	[unknown]	artist.	For
example,	a	quick	analysis	of	play	counts	reveals	that	user	2064012	played
artist	4468	an	astonishing	439,771	times!	Artist	4468	is	the	implausibly
successful	alterna-metal	band	System	of	a	Down,	who	turned	up	earlier	in
recommendations.	Assuming	an	average	song	length	of	4	minutes,	this	is	over
33	years	of	playing	hits	like	“Chop	Suey!”	and	“B.Y.O.B.”	Because	the	band
started	making	records	in	1998,	this	would	require	playing	four	or	five	tracks
at	once	for	seven	years.	It	must	be	spam	or	a	data	error,	and	another	example
of	the	types	of	real-world	data	problems	that	a	production	system	would	have
to	address.

ALS	is	not	the	only	possible	recommender	algorithm,	but	at	this	time,	it	is	the
only	one	supported	by	Spark	MLlib.	However,	MLlib	also	supports	a	variant	of
ALS	for	non-implicit	data.	Its	use	is	identical,	except	that	ALS	is	configured
with	setImplicitPrefs(false).	This	is	appropriate	when	data	is	rating-like,
rather	than	count-like.	For	example,	it	is	appropriate	when	the	data	set	is	user
ratings	of	artists	on	a	1–5	scale.	The	resulting	prediction	column	returned
from	ALSModel.transform	recommendation	methods	then	really	is	an
estimated	rating.	In	this	case,	the	simple	RMSE	(root	mean	squared	error)
metric	is	appropriate	for	evaluating	the	recommender.

Later,	other	recommender	algorithms	may	be	available	in	Spark	MLlib	or
other	libraries.

In	production,	recommender	engines	often	need	to	make	recommendations	in
real	time,	because	they	are	used	in	contexts	like	ecommerce	sites	where
recommendations	are	requested	frequently	as	customers	browse	product	pages.
Precomputing	and	storing	recommendations	in	a	NoSQL	store,	as	mentioned
previously,	is	a	reasonable	way	to	make	recommendations	available	at	scale.
One	disadvantage	of	this	approach	is	that	it	requires	precomputing
recommendations	for	all	users	who	might	need	recommendations	soon,	which
is	potentially	any	of	them.	For	example,	if	only	10,000	of	1	million	users	visit
a	site	in	a	day,	precomputing	all	million	users’	recommendations	each	day	is

https://en.wikipedia.org/wiki/System_of_a_Down


99%	wasted	effort.

It	would	be	nicer	to	compute	recommendations	on	the	fly,	as	needed.	While	we
can	compute	recommendations	for	one	user	using	the	ALSModel,	this	is
necessarily	a	distributed	operation	that	takes	several	seconds,	because	ALSModel
is	uniquely	large	and	therefore	actually	a	distributed	data	set.	This	is	not	true	of
other	models,	which	afford	much	faster	scoring.	Projects	like	Oryx	2	attempt
to	implement	real-time	on-demand	recommendations	with	libraries	like	MLlib
by	efficiently	accessing	the	model	data	in	memory.

https://github.com/OryxProject/oryx


Chapter	4.	Predicting	Forest	Cover
with	Decision	Trees
Sean	Owen

Prediction	is	very	difficult,	especially	if	it’s	about	the	future.
Niels	Bohr

In	the	late	nineteenth	century,	the	English	scientist	Sir	Francis	Galton	was	busy
measuring	things	like	peas	and	people.	He	found	that	large	peas	(and	people)
had	larger-than-average	offspring.	This	isn’t	surprising.	However,	the
offspring	were,	on	average,	smaller	than	their	parents.	In	terms	of	people:	the
child	of	a	seven-foot-tall	basketball	player	is	likely	to	be	taller	than	the	global
average	but	still	more	likely	than	not	to	be	less	than	seven	feet	tall.

As	almost	a	side	effect	of	his	study,	Galton	plotted	child	versus	parent	size	and
noticed	there	was	a	roughly	linear	relationship	between	the	two.	Large	parent
peas	had	large	children,	but	slightly	smaller	than	themselves;	small	parents	had
small	children,	but	generally	a	bit	larger	than	themselves.	The	line’s	slope	was
therefore	positive	but	less	than	1,	and	Galton	described	this	phenomenon	as	we
do	today,	as	regression	to	the	mean.

Although	maybe	not	perceived	this	way	at	the	time,	this	line	was,	to	me,	an
early	example	of	a	predictive	model.	The	line	links	the	two	values,	and	implies
that	the	value	of	one	suggests	a	lot	about	the	value	of	the	other.	Given	the	size
of	a	new	pea,	this	relationship	could	lead	to	a	more	accurate	estimate	of	its
offspring’s	size	than	simply	assuming	the	offspring	would	be	like	the	parent	or
like	every	other	pea.



Fast	Forward	to	Regression
More	than	a	century	of	statistics	later,	and	since	the	advent	of	modern	machine
learning	and	data	science,	we	still	talk	about	the	idea	of	predicting	a	value	from
other	values	as	regression,	even	though	it	has	nothing	to	do	with	slipping	back
toward	a	mean	value,	or	indeed	moving	backward	at	all.	Regression	techniques
also	relate	to	classification	techniques.	Generally,	regression	refers	to
predicting	a	numeric	quantity	like	size	or	income	or	temperature,	whereas
classification	refers	to	predicting	a	label	or	category,	like	“spam”	or	“picture
of	a	cat.”

The	common	thread	linking	regression	and	classification	is	that	both	involve
predicting	one	(or	more)	values	given	one	(or	more)	other	values.	To	do	so,
both	require	a	body	of	inputs	and	outputs	to	learn	from.	They	need	to	be	fed
both	questions	and	known	answers.	For	this	reason,	they	are	known	as	types	of
supervised	learning.

Classification	and	regression	are	the	oldest	and	most	well-studied	types	of
predictive	analytics.	Most	algorithms	you	will	likely	encounter	in	analytics
packages	and	libraries	are	classification	or	regression	techniques,	like	support
vector	machines,	logistic	regression,	naïve	Bayes,	neural	networks,	and	deep
learning.	Recommenders,	the	topic	of	Chapter	3,	were	comparatively	more
intuitive	to	introduce,	but	are	also	just	a	relatively	recent	and	separate	subtopic
within	machine	learning.

This	chapter	will	focus	on	a	popular	and	flexible	type	of	algorithm	for	both
classification	and	regression:	decision	trees,	and	the	algorithm’s	extension,
random	decision	forests.	The	exciting	thing	about	these	algorithms	is	that,	with
all	due	respect	to	Mr.	Bohr,	they	can	help	predict	the	future	—	or	at	least,
predict	the	things	we	don’t	yet	know	for	sure,	like	the	likelihood	you	will	buy	a
car	based	on	your	online	behavior,	whether	an	email	is	spam	given	its	words,
or	which	acres	of	land	are	likely	to	grow	the	most	crops	given	their	location
and	soil	chemistry.

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Random_forest


Vectors	and	Features
To	explain	the	choice	of	the	data	set	and	algorithm	featured	in	this	chapter,	and
to	begin	to	explain	how	regression	and	classification	operate,	it	is	necessary	to
briefly	define	the	terms	that	describe	their	input	and	output.

Consider	predicting	tomorrow’s	high	temperature	given	today’s	weather.
There	is	nothing	wrong	with	this	idea,	but	“today’s	weather”	is	a	casual
concept	that	requires	structuring	before	it	can	be	fed	into	a	learning	algorithm.

Really,	it	is	certain	features	of	today’s	weather	that	may	predict	tomorrow’s
temperature,	such	as:

Today’s	high	temperature

Today’s	low	temperature

Today’s	average	humidity

Whether	it’s	cloudy,	rainy,	or	clear	today

The	number	of	weather	forecasters	predicting	a	cold	snap	tomorrow

These	features	are	also	sometimes	called	dimensions,	predictors,	or	just
variables.	Each	of	these	features	can	be	quantified.	For	example,	high	and	low
temperatures	are	measured	in	degrees	Celsius,	humidity	can	be	measured	as	a
fraction	between	0	and	1,	and	weather	type	can	be	labeled	cloudy,	rainy,	or
clear.	The	number	of	forecasters	is,	of	course,	an	integer	count.	Today’s
weather	might	therefore	be	reduced	to	a	list	of	values	like
13.1,19.0,0.73,cloudy,1.

These	five	features	together,	in	order,	are	known	as	a	feature	vector,	and	can
describe	any	day’s	weather.	This	usage	bears	some	resemblance	to	use	of	the
term	vector	in	linear	algebra,	except	that	a	vector	in	this	sense	can	conceptually
contain	nonnumeric	values,	and	even	lack	some	values.

These	features	are	not	all	of	the	same	type.	The	first	two	features	are	measured
in	degrees	Celsius,	but	the	third	is	unitless,	a	fraction.	The	fourth	is	not	a
number	at	all,	and	the	fifth	is	a	number	that	is	always	a	nonnegative	integer.



For	purposes	of	discussion,	this	book	will	talk	about	features	in	two	broad
groups	only:	categorical	features	and	numeric	features.	In	this	context,	numeric
features	are	those	that	can	be	quantified	by	a	number	and	have	a	meaningful
ordering.	For	example,	it’s	meaningful	to	say	that	today’s	high	was	23ºC,	and
that	this	is	higher	than	yesterday’s	high	of	22ºC.	All	of	the	features	mentioned
previously	are	numeric,	except	the	weather	type.	Terms	like	clear	are	not
numbers,	and	have	no	ordering.	It	is	meaningless	to	say	that	cloudy	is	larger
than	clear.	This	is	a	categorical	feature,	which	instead	takes	on	one	of	several
discrete	values.



Training	Examples
A	learning	algorithm	needs	to	train	on	data	in	order	to	make	predictions.	It
requires	a	large	number	of	inputs,	and	known	correct	outputs,	from	historical
data.	For	example,	in	this	problem,	the	learning	algorithm	would	be	given	that,
one	day,	the	weather	was	between	12º	and	16ºC,	with	10%	humidity,	clear,	with
no	forecast	of	a	cold	snap;	and	the	following	day,	the	high	temperature	was
17.2ºC.	With	enough	of	these	examples,	a	learning	algorithm	might	learn	to
predict	the	following	day’s	high	temperature	with	some	accuracy.

Feature	vectors	provide	an	organized	way	to	describe	input	to	a	learning
algorithm	(here:	12.5,15.5,0.10,clear,0).	The	output,	or	target,	of	the
prediction	can	also	be	thought	of	as	a	feature.	Here,	it	is	a	numeric	feature:
17.2.	It’s	not	uncommon	to	simply	include	the	target	as	another	feature	in	the
feature	vector.	The	entire	training	example	might	be	thought	of	as
12.5,15.5,0.10,clear,0,17.2.	The	collection	of	all	of	these	examples	is
known	as	the	training	set.

Note	that	regression	problems	are	just	those	where	the	target	is	a	numeric
feature,	and	classification	problems	are	those	where	the	target	is	categorical.
Not	every	regression	or	classification	algorithm	can	handle	categorical
features	or	categorical	targets;	some	are	limited	to	numeric	features.



Decision	Trees	and	Forests
It	turns	out	that	the	family	of	algorithms	known	as	decision	trees	can	naturally
handle	both	categorical	and	numeric	features.	Building	a	single	tree	can	be
done	in	parallel,	and	many	trees	can	be	built	in	parallel	at	once.	They	are
robust	to	outliers	in	the	data,	meaning	that	a	few	extreme	and	possibly
erroneous	data	points	might	not	affect	predictions	at	all.	They	can	consume
data	of	different	types	and	on	different	scales	without	the	need	for
preprocessing	or	normalization,	which	is	an	issue	that	will	reappear	in
Chapter	5.

Decision	trees	generalize	into	a	more	powerful	algorithm,	called	random
decision	forests.	Their	flexibility	makes	these	algorithms	worthwhile	to
examine	in	this	chapter,	where	Spark	MLlib’s	DecisionTree	and	RandomForest
implementation	will	be	applied	to	a	data	set.

Decision	tree–based	algorithms	have	the	further	advantage	of	being
comparatively	intuitive	to	understand	and	reason	about.	In	fact,	we	all	probably
use	the	same	reasoning	embodied	in	decision	trees,	implicitly,	in	everyday	life.
For	example,	I	sit	down	to	have	morning	coffee	with	milk.	Before	I	commit	to
that	milk	and	add	it	to	my	brew,	I	want	to	predict:	is	the	milk	spoiled?	I	don’t
know	for	sure.	I	might	check	if	the	use-by	date	has	passed.	If	not,	I	predict	no,
it’s	not	spoiled.	If	the	date	has	passed,	but	that	was	three	or	fewer	days	ago,	I
take	my	chances	and	predict	no,	it’s	not	spoiled.	Otherwise,	I	sniff	the	milk.	If	it
smells	funny,	I	predict	yes,	and	otherwise	no.

This	series	of	yes/no	decisions	that	lead	to	a	prediction	are	what	decision	trees
embody.	Each	decision	leads	to	one	of	two	results,	which	is	either	a	prediction
or	another	decision,	as	shown	in	Figure	4-1.	In	this	sense,	it	is	natural	to	think
of	the	process	as	a	tree	of	decisions,	where	each	internal	node	in	the	tree	is	a
decision,	and	each	leaf	node	is	a	final	answer.



Figure	4-1.	Decision	tree:	is	it	spoiled?

The	preceding	rules	were	ones	I	learned	to	apply	intuitively	over	years	of
bachelor	life	—	they	seemed	like	rules	that	were	both	simple	and	also	usefully
differentiated	cases	of	spoiled	and	nonspoiled	milk.	These	are	also	properties
of	a	good	decision	tree.

That	is	a	simplistic	decision	tree,	and	was	not	built	with	any	rigor.	To
elaborate,	consider	another	example.	A	robot	has	taken	a	job	in	an	exotic	pet
store.	It	wants	to	learn,	before	the	shop	opens,	which	animals	in	the	shop	would
make	a	good	pet	for	a	child.	The	owner	lists	nine	pets	that	would	and	wouldn’t
be	suitable	before	hurrying	off.	The	robot	compiles	the	information	found	in
Table	4-1	from	examining	the	animals.

Table	4-1.	Exotic	pet	store	“feature
vectors”

Name Weight	(kg) #	Legs Color Good	pet?

Fido 20.5 4 Brown Yes



Mr.	Slither 3.1 0 Green No

Nemo 0.2 0 Tan Yes

Dumbo 1390.8 4 Gray No

Kitty 12.1 4 Gray Yes

Jim 150.9 2 Tan No

Millie 0.1 100 Brown No

McPigeon 1.0 2 Gray No

Spot 10.0 4 Brown Yes

Although	a	name	is	given,	it	will	not	be	included	as	a	feature.	There	is	little
reason	to	believe	the	name	alone	is	predictive;	“Felix”	could	name	a	cat	or	a
poisonous	tarantula,	for	all	the	robot	knows.	So,	there	are	two	numeric
features	(weight,	number	of	legs)	and	one	categorical	feature	(color)
predicting	a	categorical	target	(is/is	not	a	good	pet	for	a	child).

The	robot	might	try	to	fit	a	simple	decision	tree	to	this	training	data	to	start,
consisting	of	a	single	decision	based	on	weight,	as	shown	in	Figure	4-2.

Figure	4-2.	Robot’s	first	decision	tree



The	logic	of	the	decision	tree	is	easy	to	read	and	make	some	sense	of:	500kg
animals	certainly	sound	unsuitable	as	pets.	This	rule	predicts	the	correct	value
in	five	of	nine	cases.	A	quick	glance	suggests	that	we	could	improve	the	rule	by
lowering	the	weight	threshold	to	100kg.	This	gets	six	of	nine	examples
correct.	The	heavy	animals	are	now	predicted	correctly;	the	lighter	animals	are
only	partly	correct.

So,	a	second	decision	can	be	constructed	to	further	refine	the	prediction	for
examples	with	weights	less	than	100kg.	It	would	be	good	to	pick	a	feature	that
changes	some	of	the	incorrect	Yes	predictions	to	No.	For	example,	there	is	one
small	green	animal,	sounding	suspiciously	like	a	snake,	that	the	robot	could
predict	correctly	by	deciding	on	color,	as	shown	in	Figure	4-3.

Figure	4-3.	Robot’s	next	decision	tree

Now,	seven	of	nine	examples	are	correct.	Of	course,	decision	rules	could	be
added	until	all	nine	were	correctly	predicted.	The	logic	embodied	in	the
resulting	decision	tree	would	probably	sound	implausible	when	translated	into
common	speech:	“If	the	animal’s	weight	is	less	than	100kg,	and	its	color	is
brown	instead	of	green,	and	it	has	fewer	than	10	legs,	then	yes	it	is	a	suitable



pet.”	While	perfectly	fitting	the	given	examples,	a	decision	tree	like	this	would
fail	to	predict	that	a	small,	brown,	four-legged	wolverine	is	not	a	suitable	pet.
Some	balance	is	needed	to	avoid	this	phenomenon,	known	as	overfitting.

This	is	enough	of	an	introduction	to	decision	trees	for	us	to	begin	using	them
with	Spark.	The	remainder	of	the	chapter	will	explore	how	to	pick	decision
rules,	how	to	know	when	to	stop,	and	how	to	gain	accuracy	by	creating	a	forest
of	trees.



Covtype	Data	Set
The	data	set	used	in	this	chapter	is	the	well-known	Covtype	data	set,	available
online	as	a	compressed	CSV-format	data	file,	covtype.data.gz,	and
accompanying	info	file,	covtype.info.

The	data	set	records	the	types	of	forest-covering	parcels	of	land	in	Colorado,
USA.	It’s	only	a	coincidence	that	the	data	set	concerns	real-world	forests!	Each
example	contains	several	features	describing	each	parcel	of	land	—	like	its
elevation,	slope,	distance	to	water,	shade,	and	soil	type	—	along	with	the
known	forest	type	covering	the	land.	The	forest	cover	type	is	to	be	predicted
from	the	rest	of	the	features,	of	which	there	are	54	in	total.

This	data	set	has	been	used	in	research	and	even	a	Kaggle	competition.	It	is	an
interesting	data	set	to	explore	in	this	chapter	because	it	contains	both
categorical	and	numeric	features.	There	are	581,012	examples	in	the	data	set,
which	does	not	exactly	qualify	as	big	data	but	is	large	enough	to	be
manageable	as	an	example	and	still	highlight	some	issues	of	scale.

https://bit.ly/1KiJRfg
https://www.kaggle.com/c/forest-cover-type-prediction


Preparing	the	Data
Thankfully,	the	data	is	already	in	a	simple	CSV	format	and	does	not	require
much	cleansing	or	other	preparation	to	be	used	with	Spark	MLlib.	Later,	it	will
be	of	interest	to	explore	some	transformations	of	the	data,	but	it	can	be	used	as
is	to	start.

The	covtype.data	file	should	be	extracted	and	copied	into	HDFS.	This	chapter
will	assume	that	the	file	is	available	at	/user/ds/.	Start	spark-shell.	You	may
again	find	it	helpful	to	give	the	shell	a	healthy	amount	of	memory	to	work
with,	as	building	decision	forests	can	be	resource-intensive.	If	you	have	the
memory,	specify	--driver-memory	8g	or	similar.

CSV	files	contain	fundamentally	tabular	data,	organized	into	rows	of	columns.
Sometimes	these	columns	are	given	names	in	a	header	line,	although	that’s	not
the	case	here.	The	column	names	are	given	in	the	companion	file,	covtype.info.
Conceptually,	each	column	of	a	CSV	file	has	a	type	as	well	—	a	number,	a
string	—	but	a	CSV	file	doesn’t	specify	this.

It’s	natural	to	parse	this	data	as	a	data	frame	because	this	is	Spark’s	abstraction
for	tabular	data,	with	a	defined	column	schema,	including	column	names	and
types.	Spark	has	built-in	support	for	reading	CSV	data,	in	fact:

val	dataWithoutHeader	=	spark.read.

		option("inferSchema",	true).

		option("header",	false).

		csv("hdfs:///user/ds/covtype.data")

...

org.apache.spark.sql.DataFrame	=	[_c0:	int,	_c1:	int	...	53	more	fields]

This	code	reads	the	input	as	CSV	and	does	not	attempt	to	parse	the	first	line	as
a	header	of	column	names.	It	also	requests	that	the	type	of	each	column	be
inferred	by	examining	the	data.	It	correctly	infers	that	all	of	the	columns	are
numbers,	and	more	specifically,	integers.	Unfortunately	it	can	only	name	the
columns	“_c0”	and	so	on.

Looking	at	the	column	names,	it’s	clear	that	some	features	are	indeed	numeric.
“Elevation”	is	an	elevation	in	meters;	“Slope”	is	measured	in	degrees.
However,	“Wilderness_Area”	is	something	different,	because	it	is	said	to	span



four	columns,	each	of	which	is	a	0	or	1.	In	reality,	“Wilderness_Area”	is	a
categorical	value,	not	a	numeric	one.

These	four	columns	are	actually	a	one-hot	or	1-of-n	encoding,	in	which	one
categorical	feature	that	takes	on	N	distinct	values	becomes	N	numeric	features,
each	taking	on	the	value	0	or	1.	Exactly	one	of	the	N	values	has	value	1,	and	the
others	are	0.	For	example,	a	categorical	feature	for	weather	that	can	be	cloudy,
rainy,	or	clear	would	become	three	numeric	features,	where	cloudy	is
represented	by	1,0,0;	rainy	by	0,1,0;	and	so	on.	These	three	numeric	features
might	be	thought	of	as	is_cloudy,	is_rainy,	and	is_clear	features.	Likewise,
40	of	the	columns	are	really	one	Soil_Type	categorical	feature.

This	isn’t	the	only	possible	way	to	encode	a	categorical	feature	as	a	number.
Another	possible	encoding	simply	assigns	a	distinct	numeric	value	to	each
possible	value	of	the	categorical	feature.	For	example,	cloudy	may	become
1.0,	rainy	2.0,	and	so	on.	The	target	itself,	“Cover_Type”,	is	a	categorical
value	encoded	as	a	value	1	to	7.

Be	careful	when	encoding	a	categorical	feature	as	a	single	numeric	feature.	The	original
categorical	values	have	no	ordering,	but	when	encoded	as	a	number,	they	appear	to.	Treating
the	encoded	feature	as	numeric	leads	to	meaningless	results	because	the	algorithm	is
effectively	pretending	that	rainy	is	somehow	greater	than,	and	two	times	larger	than,	cloudy.
It’s	OK	as	long	as	the	encoding’s	numeric	value	is	not	used	as	a	number.

So	we	see	both	types	of	encodings	of	categorical	features.	It	would	have,
perhaps,	been	simpler	and	more	straightforward	to	not	encode	such	features
(and	in	two	ways,	no	less),	and	instead	simply	include	their	values	directly	like
“Rawah	Wilderness	Area.”	This	may	be	an	artifact	of	history;	the	data	set	was
released	in	1998.	For	performance	reasons	or	to	match	the	format	expected	by
libraries	of	the	day,	which	were	built	more	for	regression	problems,	data	sets
often	contain	data	encoded	in	these	ways.

In	any	event,	before	proceeding,	it	is	useful	to	add	column	names	to	this
DataFrame	in	order	to	make	it	easier	to	work	with:

val	colNames	=	Seq(

				"Elevation",	"Aspect",	"Slope",

https://en.wikipedia.org/wiki/One-hot


				"Horizontal_Distance_To_Hydrology",	"Vertical_Distance_To_Hydrology",

				"Horizontal_Distance_To_Roadways",

				"Hillshade_9am",	"Hillshade_Noon",	"Hillshade_3pm",

				"Horizontal_Distance_To_Fire_Points"

		)	++	(	

				(0	until	4).map(i	=>	s"Wilderness_Area_$i")

		)	++	(

				(0	until	40).map(i	=>	s"Soil_Type_$i")

		)	++	Seq("Cover_Type")

val	data	=	dataWithoutHeader.toDF(colNames:_*).

		withColumn("Cover_Type",	$"Cover_Type".cast("double"))

data.head

...

org.apache.spark.sql.Row	=	[2596,51,3,258,0,510,221,232,148,6279,1,0,0,0,...

++	concatenates	collections
The	wilderness-	and	soil-related	columns	are	named	“Wilderness_Area_0”,
“Soil_Type_0”,	and	a	bit	of	Scala	can	generate	these	44	names	without	having
to	type	them	all	out.	Finally,	the	target	“Cover_Type”	column	is	cast	to	a
double	value	upfront,	because	it	will	actually	be	necessary	to	consume	it	as	a
double	rather	than	int	in	all	Spark	MLlib	APIs.	This	will	become	apparent
later.

You	can	call	data.show()	to	see	some	rows	of	the	data	set,	but	the	display	is	so
wide	that	it	will	be	difficult	to	read	at	all.	data.head	displays	it	as	a	raw	Row
object,	which	will	be	more	readable	in	this	case.



A	First	Decision	Tree
In	Chapter	3,	we	built	a	recommender	model	right	away	on	all	of	the	available
data.	This	created	a	recommender	that	could	be	sense-checked	by	anyone	with
some	knowledge	of	music:	looking	at	a	user ’s	listening	habits	and
recommendations,	we	got	some	sense	that	it	was	producing	good	results.	Here,
that	is	not	possible.	We	would	have	no	idea	how	to	make	up	a	new	54-feature
description	of	a	new	parcel	of	land	in	Colorado	or	what	kind	of	forest	cover	to
expect	from	such	a	parcel.

Instead,	we	must	jump	straight	to	holding	out	some	data	for	purposes	of
evaluating	the	resulting	model.	Before,	the	AUC	metric	was	used	to	assess	the
agreement	between	held-out	listening	data	and	predictions	from
recommendations.	The	principle	is	the	same	here,	although	the	evaluation
metric	will	be	different:	accuracy.	The	majority	—	90%	—	of	the	data	will
again	be	used	for	training,	and	later,	we’ll	see	that	a	subset	of	this	training	set
will	be	held	out	for	cross-validation	(the	CV	set).	The	other	10%	held	out	here
is	actually	a	third	subset,	a	proper	test	set.

val	Array(trainData,	testData)	=	data.randomSplit(Array(0.9,	0.1))

trainData.cache()

testData.cache()

The	data	needs	a	little	more	preparation	to	be	used	with	a	classifier	in	Spark
MLlib.	The	input	DataFrame	contains	many	columns,	each	holding	one	feature
that	could	be	used	to	predict	the	target	column.	Spark	MLlib	requires	all	of	the
inputs	to	be	collected	into	one	column,	whose	value	is	a	vector.	This	class	is	an
abstraction	for	vectors	in	the	linear	algebra	sense,	and	contains	only	numbers.
For	most	intents	and	purposes,	they	work	like	a	simple	array	of	double	values
(floating-point	numbers).	Of	course,	some	of	the	input	features	are
conceptually	categorical,	even	if	they’re	all	represented	with	numbers	in	the
input.	For	now,	we’ll	overlook	this	point	and	return	to	it	later.

Fortunately,	the	VectorAssembler	class	can	do	this	work:

import	org.apache.spark.ml.feature.VectorAssembler

val	inputCols	=	trainData.columns.filter(_	!=	"Cover_Type")



val	assembler	=	new	VectorAssembler().

		setInputCols(inputCols).

		setOutputCol("featureVector")

val	assembledTrainData	=	assembler.transform(trainData)

assembledTrainData.select("featureVector").show(truncate	=	false)

...

+-------------------------------------------------------------------	...

|featureVector																																																							...

+-------------------------------------------------------------------	...

|(54,[0,1,2,3,4,5,6,7,8,9,13,15],[1863.0,37.0,17.0,120.0,18.0,90.0,2	...

|(54,[0,1,2,5,6,7,8,9,13,18],[1874.0,18.0,14.0,90.0,208.0,209.0,135.	...

|(54,[0,1,2,3,4,5,6,7,8,9,13,18],[1879.0,28.0,19.0,30.0,12.0,95.0,20	...

...

Its	key	parameters	are	the	columns	to	combine	into	the	feature	vector,	and	the
name	of	the	new	column	containing	the	feature	vector.	Here,	all	columns	—
except	—	the	target,	of	course	—	are	included	as	input	features.	The	resulting
DataFrame	has	a	new	“featureVector”	column,	as	shown.

The	output	doesn’t	look	exactly	like	a	sequence	of	numbers,	but	that’s	because
this	shows	a	raw	representation	of	the	vector,	represented	as	a	SparseVector
instance	to	save	storage.	Because	most	of	the	54	values	are	0,	it	only	stores
nonzero	values	and	their	indices.	This	detail	won’t	matter	in	classification.

VectorAssembler	is	an	example	of	Transformer	within	the	current	Spark	MLlib
“Pipelines”	API.	It	transforms	another	DataFrame	into	a	DataFrame,	and	is
composable	with	other	transformations	into	a	pipeline.	Later	in	this	chapter,
these	transformations	will	be	connected	into	an	actual	Pipeline.	Here,	the
transformation	is	just	invoked	directly,	which	is	sufficient	to	build	a	first
decision	tree	classifier	model.

import	org.apache.spark.ml.classification.DecisionTreeClassifier

import	scala.util.Random

val	classifier	=	new	DecisionTreeClassifier().

		setSeed(Random.nextLong()).	

		setLabelCol("Cover_Type").

		setFeaturesCol("featureVector").

		setPredictionCol("prediction")

val	model	=	classifier.fit(assembledTrainData)

println(model.toDebugString)

...

DecisionTreeClassificationModel	(uid=dtc_29cfe1281b30)	of	depth	5	with	63	nodes

		If	(feature	0	<=	3039.0)

			If	(feature	0	<=	2555.0)

				If	(feature	10	<=	0.0)

					If	(feature	0	<=	2453.0)



						If	(feature	3	<=	0.0)

							Predict:	4.0

						Else	(feature	3	>	0.0)

							Predict:	3.0

							...

Use	random	seed
Again,	the	essential	configuration	for	the	classifier	consists	of	column	names:
the	column	containing	the	input	feature	vectors	and	the	column	containing	the
target	value	to	predict.	Because	the	model	will	later	be	used	to	predict	new
values	of	the	target,	it	is	given	the	name	of	a	column	to	store	predictions.

Printing	a	representation	of	the	model	shows	some	of	its	tree	structure.	It
consists	of	a	series	of	nested	decisions	about	features,	comparing	feature
values	to	thresholds.	(Here,	for	historical	reasons,	the	features	are	only
referred	to	by	number,	not	name,	unfortunately.)

Decision	trees	are	able	to	assess	the	importance	of	input	features	as	part	of
their	building	process.	That	is,	they	can	estimate	how	much	each	input	feature
contributes	to	making	correct	predictions.	This	information	is	simple	to	access
from	the	model.

model.featureImportances.toArray.zip(inputCols).

		sorted.reverse.foreach(println)

...

(0.7931809106979147,Elevation)

(0.050122380231328235,Horizontal_Distance_To_Hydrology)

(0.030609364695664505,Wilderness_Area_0)

(0.03052094489457567,Soil_Type_3)

(0.026170212644908816,Hillshade_Noon)

(0.024374024564392027,Soil_Type_1)

(0.01670006142176787,Soil_Type_31)

(0.012596990926899494,Horizontal_Distance_To_Roadways)

(0.011205482194428473,Wilderness_Area_2)

(0.0024194271152490235,Hillshade_3pm)

(0.0018551637821715788,Horizontal_Distance_To_Fire_Points)

(2.450368306995527E-4,Soil_Type_8)

(0.0,Wilderness_Area_3)

...

This	pairs	importance	values	(higher	is	better)	with	column	names	and	prints
them	in	order	from	most	to	least	important.	Elevation	seems	to	dominate	as	the
most	important	feature;	most	features	are	estimated	to	have	virtually	no
importance	when	predicting	the	cover	type!



The	resulting	DecisionTreeClassificationModel	is	itself	a	transformer
because	it	can	transform	a	data	frame	containing	feature	vectors	into	a	data
frame	also	containing	predictions.

For	example,	it	might	be	interesting	to	see	what	the	model	predicts	on	the
training	data,	and	compare	its	prediction	with	the	known	correct	cover	type.

val	predictions	=	model.transform(assembledTrainData)

predictions.select("Cover_Type",	"prediction",	"probability").

		show(truncate	=	false)

...

+----------+----------+------------------------------------------------	...

|Cover_Type|prediction|probability																																						...

+----------+----------+------------------------------------------------	...

|6.0							|3.0							|[0.0,0.0,0.03421818804589827,0.6318547696523378,	...

|6.0							|4.0							|[0.0,0.0,0.043440860215053764,0.283870967741935,	...

|6.0							|3.0							|[0.0,0.0,0.03421818804589827,0.6318547696523378,	...

|6.0							|3.0							|[0.0,0.0,0.03421818804589827,0.6318547696523378,	...

...

Interestingly,	the	output	also	contains	a	“probability”	column	that	gives	the
model’s	estimate	of	how	likely	it	is	that	each	possible	outcome	is	correct.	This
shows	that	in	these	instances,	it’s	fairly	sure	the	answer	is	3	in	several	cases
and	quite	sure	the	answer	isn’t	1.

Eagle-eyed	readers	might	note	that	the	probability	vectors	actually	have	eight
values	even	though	there	are	only	seven	possible	outcomes.	The	vector ’s
values	at	indices	1	to	7	do	contain	the	probability	of	outcomes	1	to	7.	However,
there	is	also	a	value	at	index	0,	which	always	shows	as	probability	0.0.	This
can	be	ignored,	as	0	isn’t	even	a	valid	outcome,	as	this	says.	It’s	a	quirk	of
representing	this	information	as	a	vector	that’s	worth	being	aware	of.

Based	on	this	snippet,	it	looks	like	the	model	could	use	some	work.	Its
predictions	look	like	they	are	often	wrong.	As	with	the	ALS	implementation,	the
DecisionTreeClassifier	implementation	has	several	hyperparameters	for
which	a	value	must	be	chosen,	and	they’ve	all	been	left	to	defaults	here.	Here,
the	test	set	can	be	used	to	produce	an	unbiased	evaluation	of	the	expected
accuracy	of	a	model	built	with	these	default	hyperparameters.

MulticlassClassificationEvaluator	can	compute	accuracy	and	other	metrics
that	evaluate	the	quality	of	the	model’s	predictions.	It’s	an	example	of	an
evaluator	in	Spark	MLlib,	which	is	responsible	for	assessing	the	quality	of	an



output	DataFrame	in	some	way.

import	org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

val	evaluator	=	new	MulticlassClassificationEvaluator().

		setLabelCol("Cover_Type").

		setPredictionCol("prediction")

evaluator.setMetricName("accuracy").evaluate(predictions)

evaluator.setMetricName("f1").evaluate(predictions)

...

0.6976371385502989

0.6815943874214012

After	being	given	the	column	containing	the	“label”	(target,	or	known	correct
output	value)	and	the	name	of	the	column	containing	the	prediction,	it	finds	that
the	two	match	about	70%	of	the	time.	This	is	the	accuracy	of	this	classifier.	It
can	compute	other	related	measures,	like	the	F1	score.	For	purposes	here,
accuracy	will	be	used	to	evaluate	classifiers.

This	single	number	gives	a	good	summary	of	the	quality	of	the	classifier ’s
output.	Sometimes,	however,	it	can	be	useful	to	look	at	the	confusion	matrix.
This	is	a	table	with	a	row	and	a	column	for	every	possible	value	of	the	target.
Because	there	are	seven	target	category	values,	this	is	a	7×7	matrix,	where	each
row	corresponds	to	an	actual	correct	value,	and	each	column	to	a	predicted
value,	in	order.	The	entry	at	row	i	and	column	j	counts	the	number	of	times	an
example	with	true	category	i	was	predicted	as	category	j.	So,	the	correct
predictions	are	the	counts	along	the	diagonal	and	the	predictions	are
everything	else.

Fortunately,	Spark	provides	support	code	to	compute	the	confusion	matrix.
Unfortunately,	that	implementation	exists	as	part	of	the	older	MLlib	APIs	that
operate	on	RDDs.	However,	that’s	no	big	deal,	because	data	frames	and	data
sets	can	freely	be	turned	into	RDDs	and	used	with	these	older	APIs.	Here,
MulticlassMetrics	is	appropriate	for	a	data	frame	containing	predictions.

import	org.apache.spark.mllib.evaluation.MulticlassMetrics

val	predictionRDD	=	predictions.

		select("prediction",	"Cover_Type").

		as[(Double,Double)].	

		rdd	

val	multiclassMetrics	=	new	MulticlassMetrics(predictionRDD)

multiclassMetrics.confusionMatrix

https://en.wikipedia.org/wiki/F1_score


...

143125.0		41769.0			164.0				0.0				0.0			0.0		5396.0

65865.0			184360.0		3930.0			102.0		39.0		0.0		677.0

0.0							5680.0				25772.0		674.0		0.0			0.0		0.0

0.0							21.0						1481.0			973.0		0.0			0.0		0.0

87.0						7761.0				648.0				0.0				69.0		0.0		0.0

0.0							6175.0				8902.0			559.0		0.0			0.0		0.0

8058.0				24.0						50.0					0.0				0.0			0.0		10395.0

Convert	to	data	set.

Convert	to	RDD.

Your	values	will	be	a	little	different.	The	process	of	building	a	decision	tree	includes	some
random	choices	that	can	lead	to	slightly	different	classifications.

Counts	are	high	along	the	diagonal,	which	is	good.	However,	there	are
certainly	a	number	of	misclassifications,	and,	for	example,	category	5	is	never
predicted	at	all.

Of	course,	it’s	also	possible	to	calculate	something	like	a	confusion	matrix
directly	with	the	DataFrame	API,	using	its	more	general	operators.	It	is	not
necessary	to	rely	on	a	specialized	method	anymore.

val	confusionMatrix	=	predictions.

		groupBy("Cover_Type").

		pivot("prediction",	(1	to	7)).

		count().

		na.fill(0.0).	

		orderBy("Cover_Type")

confusionMatrix.show()

...

+----------+------+------+-----+---+---+---+-----+

|Cover_Type|					1|					2|				3|		4|		5|		6|				7|

+----------+------+------+-----+---+---+---+-----+

|							1.0|143125|	41769|		164|		0|		0|		0|	5396|

|							2.0|	65865|184360|	3930|102|	39|		0|		677|

|							3.0|					0|		5680|25772|674|		0|		0|				0|

|							4.0|					0|				21|	1481|973|		0|		0|				0|

|							5.0|				87|		7761|		648|		0|	69|		0|				0|

|							6.0|					0|		6175|	8902|559|		0|		0|				0|

|							7.0|		8058|				24|			50|		0|		0|		0|10395|

+----------+------+------+-----+---+---+---+-----+



Replace	null	with	0
Microsoft	Excel	users	may	have	recognized	the	problem	as	just	like	that	of
computing	a	pivot	table.	A	pivot	table	groups	values	by	two	dimensions	whose
values	become	rows	and	columns	of	the	output,	and	compute	some
aggregation	within	those	groupings,	like	a	count	here.	This	is	also	available	as
a	PIVOT	function	in	several	databases,	and	is	supported	by	Spark	SQL.	It’s
arguably	more	elegant	and	powerful	to	compute	it	this	way.

Although	70%	accuracy	sounds	decent,	it’s	not	immediately	clear	whether	it	is
outstanding	or	poor.	How	well	would	a	simplistic	approach	do	to	establish	a
baseline?	Just	as	a	broken	clock	is	correct	twice	a	day,	randomly	guessing	a
classification	for	each	example	would	also	occasionally	produce	the	correct
answer.

We	could	construct	such	a	random	“classifier”	by	picking	a	class	at	random	in
proportion	to	its	prevalence	in	the	training	set.	For	example,	if	30%	of	the
training	set	were	cover	type	1,	then	the	random	classifier	would	guess	“1”	33%
of	the	time.	Each	classification	would	be	correct	in	proportion	to	its	prevalence
in	the	test	set.	If	40%	of	the	test	set	were	cover	type	1,	then	guessing	“1”	would
be	correct	40%	of	the	time.	Cover	type	1	would	then	be	guessed	correctly	30%
x	40%	=	12%	of	the	time	and	contribute	12%	to	overall	accuracy.	Therefore,
we	can	evaluate	the	accuracy	by	summing	these	products	of	probabilities:

import	org.apache.spark.sql.DataFrame

def	classProbabilities(data:	DataFrame):	Array[Double]	=	{

		val	total	=	data.count()

		data.groupBy("Cover_Type").count().	

				orderBy("Cover_Type").	

				select("count").as[Double].	

				map(_	/	total).

				collect()

}

val	trainPriorProbabilities	=	classProbabilities(trainData)

val	testPriorProbabilities	=	classProbabilities(testData)

trainPriorProbabilities.zip(testPriorProbabilities).map	{	

		case	(trainProb,	cvProb)	=>	trainProb	*	cvProb

}.sum

...

0.3771270477245849

https://en.wikipedia.org/wiki/Pivot_table


Count	by	category

Order	counts	by	category

To	data	set

Sum	products	of	pairs	in	training,	test	sets
Random	guessing	achieves	37%	accuracy	then,	which	makes	70%	seem	like	a
good	result	after	all.	But	this	result	was	achieved	with	default	hyperparameters.
We	can	do	even	better	by	exploring	what	these	actually	mean	for	the	tree-
building	process.



Decision	Tree	Hyperparameters
In	Chapter	3,	the	ALS	algorithm	exposed	several	hyperparameters	whose
values	we	had	to	choose	by	building	models	with	various	combinations	of
values	and	then	assessing	the	quality	of	each	result	using	some	metric.	The
process	is	the	same	here,	although	the	metric	is	now	multiclass	accuracy
instead	of	AUC.	The	hyperparameters	controlling	how	the	tree’s	decisions	are
chosen	will	be	quite	different	as	well:	maximum	depth,	maximum	bins,
impurity	measure,	and	minimum	information	gain.

Maximum	depth	simply	limits	the	number	of	levels	in	the	decision	tree.	It	is	the
maximum	number	of	chained	decisions	that	the	classifier	will	make	to	classify
an	example.	It	is	useful	to	limit	this	to	avoid	overfitting	the	training	data,	as
illustrated	previously	in	the	pet	store	example.

The	decision	tree	algorithm	is	responsible	for	coming	up	with	potential
decision	rules	to	try	at	each	level,	like	the	weight	>=	100	or	weight	>=	500
decisions	in	the	pet	store	example.	Decisions	are	always	of	the	same	form:	for
numeric	features,	decisions	are	of	the	form	feature	>=	value;	and	for
categorical	features,	they	are	of	the	form	feature	in	(value1,	value2,	…).
So,	the	set	of	decision	rules	to	try	is	really	a	set	of	values	to	plug	in	to	the
decision	rule.	These	are	referred	to	as	“bins”	in	the	Spark	MLlib
implementation.	A	larger	number	of	bins	requires	more	processing	time	but
might	lead	to	finding	a	more	optimal	decision	rule.

What	makes	a	decision	rule	good?	Intuitively,	a	good	rule	would	meaningfully
distinguish	examples	by	target	category	value.	For	example,	a	rule	that	divides
the	Covtype	data	set	into	examples	with	only	categories	1–3	on	the	one	hand
and	4–7	on	the	other	would	be	excellent	because	it	clearly	separates	some
categories	from	others.	A	rule	that	resulted	in	about	the	same	mix	of	all
categories	as	are	found	in	the	whole	data	set	doesn’t	seem	helpful.	Following
either	branch	of	such	a	decision	leads	to	about	the	same	distribution	of
possible	target	values,	and	so	doesn’t	really	make	progress	toward	a	confident
classification.

Put	another	way,	good	rules	divide	the	training	data’s	target	values	into
relatively	homogeneous,	or	“pure,”	subsets.	Picking	a	best	rule	means



minimizing	the	impurity	of	the	two	subsets	it	induces.	There	are	two
commonly	used	measures	of	impurity:	Gini	impurity	and	entropy.

Gini	impurity	is	directly	related	to	the	accuracy	of	the	random-guess	classifier.
Within	a	subset,	it	is	the	probability	that	a	randomly	chosen	classification	of	a
randomly	chosen	example	(both	according	to	the	distribution	of	classes	in	the
subset)	is	incorrect.	This	is	the	sum	of	products	of	proportions	of	classes,	but
with	themselves	and	subtracted	from	1.	If	a	subset	has	N	classes	and	pi	is	the
proportion	of	examples	of	class	i,	then	its	Gini	impurity	is	given	in	the	Gini
impurity	equation:

If	the	subset	contains	only	one	class,	this	value	is	0	because	it	is	completely
“pure.”	When	there	are	N	classes	in	the	subset,	this	value	is	larger	than	0	and	is
largest	when	the	classes	occur	the	same	number	of	times	—	maximally	impure.

Entropy	is	another	measure	of	impurity,	borrowed	from	information	theory.
Its	nature	is	more	difficult	to	explain,	but	it	captures	how	much	uncertainty	the
collection	of	target	values	in	the	subset	implies	about	predictions	for	data	that
falls	in	that	subset.	A	subset	containing	one	class	suggests	that	the	outcome	for
the	subset	is	completely	certain	and	has	0	entropy	—	no	uncertainty.	A	subset
containing	one	of	each	possible	class,	on	the	other	hand,	suggests	a	lot	of
uncertainty	about	predictions	for	that	subset	because	data	have	been	observed
with	all	kinds	of	target	values.	This	has	high	entropy.	Hence,	low	entropy,	like
low	Gini	impurity,	is	a	good	thing.	Entropy	is	defined	by	the	entropy	equation:

https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
https://en.wikipedia.org/wiki/Entropy_(information_theory)


Interestingly,	uncertainty	has	units.	Because	the	logarithm	is	the	natural	log	(base	e),	the	units
are	nats,	the	base-e	counterpart	to	more	familiar	bits	(which	we	can	obtain	by	using	log	base
2	instead).	It	really	is	measuring	information,	so	it’s	also	common	to	talk	about	the
information	gain	of	a	decision	rule	when	using	entropy	with	decision	trees.

One	or	the	other	measure	may	be	a	better	metric	for	picking	decision	rules	in	a
given	data	set.	They	are,	in	a	way,	similar.	Both	involve	a	weighted	average:	a
sum	over	values	weighted	by	pi.	The	default	in	Spark’s	implementation	is	Gini
impurity.

Finally,	minimum	information	gain	is	a	hyperparameter	that	imposes	a
minimum	information	gain,	or	decrease	in	impurity,	for	candidate	decision
rules.	Rules	that	do	not	improve	the	subsets	impurity	enough	are	rejected.	Like
a	lower	maximum	depth,	this	can	help	the	model	resist	overfitting	because
decisions	that	barely	help	divide	the	training	input	may	in	fact	not	helpfully
divide	future	data	at	all.



Tuning	Decision	Trees
It’s	not	obvious	from	looking	at	the	data	which	impurity	measure	leads	to
better	accuracy,	or	what	maximum	depth	or	number	of	bins	is	enough	without
being	excessive.	Fortunately,	as	in	Chapter	3,	it’s	simple	to	let	Spark	try	a
number	of	combinations	of	these	values	and	report	the	results.

First,	it’s	necessary	to	set	up	a	pipeline	encapsulating	the	same	two	steps	above.
Creating	the	VectorAssembler	and	DecisionTreeClassifier	and	chaining	these
two	Transformers	together	results	in	a	single	Pipeline	object	that	represents
these	two	operations	together	as	one	operation:

import	org.apache.spark.ml.Pipeline

val	inputCols	=	trainData.columns.filter(_	!=	"Cover_Type")

val	assembler	=	new	VectorAssembler().

		setInputCols(inputCols).

		setOutputCol("featureVector")

val	classifier	=	new	DecisionTreeClassifier().

		setSeed(Random.nextLong()).

		setLabelCol("Cover_Type").

		setFeaturesCol("featureVector").

		setPredictionCol("prediction")

val	pipeline	=	new	Pipeline().setStages(Array(assembler,	classifier))

Naturally,	pipelines	can	be	much	longer	and	more	complex.	This	is	about	as
simple	as	it	gets.	Now	we	can	also	define	the	combinations	of	hyperparameters
that	should	be	tested	using	the	Spark	ML	API’s	built-in	support,
ParamGridBuilder.	It’s	also	time	to	define	the	evaluation	metric	that	will	be
used	to	pick	the	“best”	hyperparameters,	and	that	is	again
MulticlassClassificationEvaluator	here.

import	org.apache.spark.ml.tuning.ParamGridBuilder

val	paramGrid	=	new	ParamGridBuilder().

		addGrid(classifier.impurity,	Seq("gini",	"entropy")).

		addGrid(classifier.maxDepth,	Seq(1,	20)).

		addGrid(classifier.maxBins,	Seq(40,	300)).

		addGrid(classifier.minInfoGain,	Seq(0.0,	0.05)).

		build()

val	multiclassEval	=	new	MulticlassClassificationEvaluator().

		setLabelCol("Cover_Type").

		setPredictionCol("prediction").



		setMetricName("accuracy")

This	means	that	a	model	will	be	built	and	evaluated	for	two	values	of	four
hyperparameters.	That’s	16	models.	They’ll	be	evaluated	by	multiclass
accuracy.	Finally,	TrainValidationSplit	brings	these	components	together	—
the	pipeline	that	makes	models,	model	evaluation	metrics,	and
hyperparameters	to	try	—	and	can	run	the	evaluation	on	the	training	data.	It’s
worth	noting	that	CrossValidator	could	be	used	here	as	well	to	perform	full	k-
fold	cross-validation,	but	it	is	k	times	more	expensive	and	doesn’t	add	as	much
value	in	the	presence	of	big	data.	So,	TrainValidationSplit	is	used	here.

import	org.apache.spark.ml.tuning.TrainValidationSplit

val	validator	=	new	TrainValidationSplit().

		setSeed(Random.nextLong()).

		setEstimator(pipeline).

		setEvaluator(multiclassEval).

		setEstimatorParamMaps(paramGrid).

		setTrainRatio(0.9)

val	validatorModel	=	validator.fit(trainData)

This	will	take	minutes	or	more,	depending	on	your	hardware,	because	it’s
building	and	evaluating	many	models.	Note	the	train	ratio	parameter	is	set	to
0.9.	This	means	that	the	training	data	is	actually	further	subdivided	by
TrainValidationSplit	into	90%/10%	subsets.	The	former	is	used	for	training
each	model.	The	remaining	10%	of	the	input	is	held	out	as	a	cross-validation
set	to	evaluate	the	model.	If	it’s	already	holding	out	some	data	for	evaluation,
then	why	did	we	hold	out	10%	of	the	original	data	as	a	test	set?

If	the	purpose	of	the	CV	set	was	to	evaluate	parameters	that	fit	to	the	training
set,	then	the	purpose	of	the	test	set	is	to	evaluate	hyperparameters	that	were
“fit”	to	the	CV	set.	That	is,	the	test	set	ensures	an	unbiased	estimate	of	the
accuracy	of	the	final,	chosen	model	and	its	hyperparameters.

Say	that	the	best	model	chosen	by	this	process	exhibits	90%	accuracy	on	the
CV	set.	It	seems	reasonable	to	expect	it	will	exhibit	90%	accuracy	on	future
data.	However,	there’s	an	element	of	randomness	in	how	these	models	are	built.
By	chance,	this	model	and	evaluation	could	have	turned	out	unusually	well.
The	top	model	and	evaluation	result	could	have	benefited	from	a	bit	of	luck,	so
its	accuracy	estimate	is	likely	to	be	slightly	optimistic.	Put	another	way,



hyperparameters	can	overfit	too.

To	really	assess	how	well	this	best	model	is	likely	to	perform	on	future
examples,	we	need	to	evaluate	it	on	examples	that	were	not	used	to	train	it.	But
we	also	need	to	avoid	examples	in	the	CV	set	that	were	used	to	evaluate	it.	That
is	why	a	third	subset,	the	test	set,	was	held	out.

The	result	of	the	validator	contains	the	best	model	it	found.	This	itself	is	a
representation	of	the	best	overall	pipeline	it	found,	because	we	provided	an
instance	of	a	pipeline	to	run.	In	order	to	query	the	parameters	chosen	by
DecisionTreeClassifier,	it’s	necessary	to	manually	extract
DecisionTreeClassificationModel	from	the	resulting	PipelineModel,	which
is	the	final	stage	in	the	pipeline.

import	org.apache.spark.ml.PipelineModel

val	bestModel	=	validatorModel.bestModel

bestModel.asInstanceOf[PipelineModel].stages.last.extractParamMap

...

{

	 dtc_9136220619b4-cacheNodeIds:	false,

	 dtc_9136220619b4-checkpointInterval:	10,

	 dtc_9136220619b4-featuresCol:	featureVector,

	 dtc_9136220619b4-impurity:	entropy,

	 dtc_9136220619b4-labelCol:	Cover_Type,

	 dtc_9136220619b4-maxBins:	40,

	 dtc_9136220619b4-maxDepth:	20,

	 dtc_9136220619b4-maxMemoryInMB:	256,

	 dtc_9136220619b4-minInfoGain:	0.0,

	 dtc_9136220619b4-minInstancesPerNode:	1,

	 dtc_9136220619b4-predictionCol:	prediction,

	 dtc_9136220619b4-probabilityCol:	probability,

	 dtc_9136220619b4-rawPredictionCol:	rawPrediction,

	 dtc_9136220619b4-seed:	159147643

}

This	contains	a	lot	of	information	about	the	fitted	model,	but	it	also	tells	us	that
“entropy”	apparently	worked	best	as	the	impurity	measure	and	that	a	max	depth
of	20	was	not	surprisingly	better	than	1.	It	might	be	surprising	that	the	best
model	was	fit	with	just	40	bins,	but	this	is	probably	a	sign	that	40	was	“plenty”
rather	than	“better”	than	300.	Lastly,	no	minimum	information	gain	was	better
than	a	small	minimum,	which	could	imply	that	the	model	is	more	prone	to
underfit	than	overfit.

You	may	wonder	if	it	is	possible	to	see	the	accuracy	that	each	of	the	models
achieved	for	each	combination	of	hyperparameters.	The	hyperparameters	as



well	as	the	evaluations	are	exposed	by	getEstimatorParamMaps	and
validationMetrics,	respectively.	They	can	be	combined	to	display	all	of	the
parameter	combinations	sorted	by	metric	value:

val	validatorModel	=	validator.fit(trainData)

val	paramsAndMetrics	=	validatorModel.validationMetrics.

		zip(validatorModel.getEstimatorParamMaps).sortBy(-_._1)

paramsAndMetrics.foreach	{	case	(metric,	params)	=>

				println(metric)

				println(params)

				println()

}

...

0.9138483377774368

{

	 dtc_3e3b8bb692d1-impurity:	entropy,

	 dtc_3e3b8bb692d1-maxBins:	40,

	 dtc_3e3b8bb692d1-maxDepth:	20,

	 dtc_3e3b8bb692d1-minInfoGain:	0.0

}

0.9122369506416774

{

	 dtc_3e3b8bb692d1-impurity:	entropy,

	 dtc_3e3b8bb692d1-maxBins:	300,

	 dtc_3e3b8bb692d1-maxDepth:	20,

	 dtc_3e3b8bb692d1-minInfoGain:	0.0

}

...

What	was	the	accuracy	that	this	model	achieved	on	the	CV	set?	And	finally,
what	accuracy	does	the	model	achieve	on	the	test	set?

validatorModel.validationMetrics.max

multiclassEval.evaluate(bestModel.transform(testData))	

...

0.9138483377774368

0.9139978718291971

bestModel	is	a	complete	pipeline.
The	results	are	both	about	91%.	It	happens	that	the	estimate	from	the	CV	set
was	pretty	fine	to	begin	with.	In	fact,	it	is	not	usual	for	the	test	set	to	show	a
very	different	result.

This	is	an	interesting	point	at	which	to	revisit	the	issue	of	overfitting.	As



discussed	previously,	it’s	possible	to	build	a	decision	tree	so	deep	and
elaborate	that	it	fits	the	given	training	examples	very	well	or	perfectly	but	fails
to	generalize	to	other	examples	because	it	has	fit	the	idiosyncrasies	and	noise
of	the	training	data	too	closely.	This	is	a	problem	common	to	most	machine
learning	algorithms,	not	just	decision	trees.

When	a	decision	tree	has	overfit,	it	will	exhibit	high	accuracy	when	run	on	the
same	training	data	that	it	fit	the	model	to,	but	low	accuracy	on	other	examples.
Here,	the	final	model’s	accuracy	was	about	91%	on	other,	new	examples.
Accuracy	can	just	as	easily	be	evaluated	over	the	same	data	that	the	model	was
trained	on,	trainData.	This	gives	an	accuracy	of	about	95%.

The	difference	is	not	large	but	suggests	that	the	decision	tree	has	overfit	the
training	data	to	some	extent.	A	lower	maximum	depth	might	be	a	better	choice.



Categorical	Features	Revisited
So	far,	the	code	examples	have	implicitly	treated	all	input	features	as	if	they’re
numeric	(though	“Cover_Type”,	despite	being	encoded	as	numeric,	has
actually	been	correctly	treated	as	a	categorical	value.)	This	isn’t	exactly	wrong,
because	the	categorical	features	here	are	one-hot	encoded	as	several	binary	0/1
values.	Treating	these	individual	features	as	numeric	turns	out	to	be	fine,
because	any	decision	rule	on	the	“numeric”	features	will	choose	thresholds
between	0	and	1,	and	all	are	equivalent	since	all	values	are	0	or	1.

Of	course,	this	encoding	forces	the	decision	tree	algorithm	to	consider	the
values	of	the	underlying	categorical	features	individually.	Because	features
like	soil	type	are	broken	down	into	many	features,	and	because	decision	trees
treat	features	individually,	it	is	harder	to	relate	information	about	related	soil
types.

For	example,	nine	different	soil	types	are	actually	part	of	the	Leighcan	family,
and	they	may	be	related	in	ways	that	the	decision	tree	can	exploit.	If	soil	type
were	encoded	as	a	single	categorical	feature	with	40	soil	values,	then	the	tree
could	express	rules	like	“if	the	soil	type	is	one	of	the	nine	Leighton	family
types”	directly.	However,	when	encoded	as	40	features,	the	tree	would	have	to
learn	a	sequence	of	nine	decisions	on	soil	type	to	do	the	same,	this
expressiveness	may	lead	to	better	decisions	and	more	efficient	trees.

However,	having	40	numeric	features	represent	one	40-valued	categorical
feature	increases	memory	usage	and	slows	things	down.

What	about	undoing	the	one-hot	encoding?	This	would	replace,	for	example,
the	four	columns	encoding	wilderness	type	with	one	column	that	encodes	the
wilderness	type	as	a	number	between	0	and	3,	like	“Cover_Type”.

import	org.apache.spark.sql.functions._

def	unencodeOneHot(data:	DataFrame):	DataFrame	=	{

		val	wildernessCols	=	(0	until	4).map(i	=>	s"Wilderness_Area_$i").toArray

		val	wildernessAssembler	=	new	VectorAssembler().

				setInputCols(wildernessCols).

				setOutputCol("wilderness")

		val	unhotUDF	=	udf((vec:	Vector)	=>	vec.toArray.indexOf(1.0).toDouble)	



		val	withWilderness	=	wildernessAssembler.transform(data).

				drop(wildernessCols:_*).	

				withColumn("wilderness",	unhotUDF($"wilderness"))	

		val	soilCols	=	(0	until	40).map(i	=>	s"Soil_Type_$i").toArray

		val	soilAssembler	=	new	VectorAssembler().

				setInputCols(soilCols).

				setOutputCol("soil")

		soilAssembler.transform(withWilderness).

				drop(soilCols:_*).

				withColumn("soil",	unhotUDF($"soil"))

}

Note	UDF	definition

Drop	one-hot	columns;	no	longer	needed

Overwrite	column	with	numeric	one	of	same	name
Here	VectorAssembler	is	deployed	to	combine	the	4	and	40	wilderness	and
soil	type	columns	into	two	Vector	columns.	The	values	in	these	Vectors	are	all
0,	except	for	one	location	that	has	a	1.	There’s	no	simple	DataFrame	function
for	this,	so	we	have	to	define	our	own	UDF	that	can	be	used	to	operate	on
columns.	This	turns	these	two	new	columns	into	numbers	of	just	the	type	we
need.

From	here,	nearly	the	same	process	as	above	can	be	used	to	tune	the
hyperparameters	of	a	decision	tree	model	built	on	this	data	and	to	choose	and
evaluate	a	best	model.	There’s	one	important	difference,	however.	The	two	new
numeric	columns	have	nothing	about	them	that	indicates	they’re	actually	an
encoding	of	categorical	values.	To	treat	them	as	numbers	would	be	wrong,	as
their	ordering	is	meaningless.	However,	it	would	silently	succeed;	the
information	in	these	features	would	be	all	but	lost	though.

Internally	Spark	MLlib	can	store	additional	metadata	about	each	column.	The
details	of	this	data	are	generally	hidden	from	the	caller,	but	includes
information	such	as	whether	the	column	encodes	a	categorical	value	and	how
many	distinct	values	it	takes	on.	In	order	to	add	this	metadata,	it’s	necessary	to
put	the	data	through	VectorIndexer.	Its	job	is	to	turn	input	into	properly



labeled	categorical	feature	columns.	Although	we	did	much	of	the	work
already	to	turn	the	categorical	features	into	0-indexed	values,	VectorIndexer
will	take	care	of	the	metadata.

We	need	to	add	this	stage	to	the	Pipeline:

import	org.apache.spark.ml.feature.VectorIndexer

val	inputCols	=	unencTrainData.columns.filter(_	!=	"Cover_Type")

val	assembler	=	new	VectorAssembler().

		setInputCols(inputCols).

		setOutputCol("featureVector")

val	indexer	=	new	VectorIndexer().

		setMaxCategories(40).	

		setInputCol("featureVector").

		setOutputCol("indexedVector")

val	classifier	=	new	DecisionTreeClassifier().

		setSeed(Random.nextLong()).

		setLabelCol("Cover_Type").

		setFeaturesCol("indexedVector").

		setPredictionCol("prediction")

val	pipeline	=	new	Pipeline().setStages(Array(assembler,	indexer,	classifier))

>=	40	because	soil	has	40	values
The	approach	assumes	that	the	training	set	contains	all	possible	values	of	each
of	the	categorical	features	at	least	once.	That	is,	it	works	correctly	only	if	all	4
soil	values	and	all	40	wilderness	values	appear	in	the	training	set	so	that	all
possible	values	get	a	mapping.	Here,	that	happens	to	be	true,	but	may	not	be	for
small	training	sets	of	data	in	which	some	labels	appear	very	infrequently.	In
those	cases,	it	could	be	necessary	to	manually	create	and	add	a
VectorIndexerModel	with	the	complete	value	mapping	supplied	manually.

Aside	from	that,	the	process	is	the	same	as	before.	You	should	find	that	it	chose
a	similar	best	model	but	that	accuracy	on	the	test	set	is	about	93%.	By	treating
categorical	features	as	actual	categorical	features,	the	classifier	improved	its
accuracy	by	almost	2%.



Random	Decision	Forests
If	you	have	been	following	along	with	the	code	examples,	you	may	have
noticed	that	your	results	differ	slightly	from	those	presented	in	the	code
listings	in	the	book.	That	is	because	there	is	an	element	of	randomness	in
building	decision	trees,	and	the	randomness	comes	into	play	when	you’re
deciding	what	data	to	use	and	what	decision	rules	to	explore.

The	algorithm	does	not	consider	every	possible	decision	rule	at	every	level.
To	do	so	would	take	an	incredible	amount	of	time.	For	a	categorical	feature
over	N	values,	there	are	2N–2	possible	decision	rules	(every	subset	except	the
empty	set	and	entire	set).	For	even	moderately	large	N,	this	would	create
billions	of	candidate	decision	rules.

Instead,	decision	trees	use	several	heuristics	to	determine	which	few	rules	to
actually	consider.	The	process	of	picking	rules	also	involves	some
randomness;	only	a	few	features	picked	at	random	are	looked	at	each	time,	and
only	values	from	a	random	subset	of	the	training	data.	This	trades	a	bit	of
accuracy	for	a	lot	of	speed,	but	it	also	means	that	the	decision	tree	algorithm
won’t	build	the	same	tree	every	time.	This	is	a	good	thing.

It’s	good	for	the	same	reason	that	the	“wisdom	of	the	crowds”	usually	beats
individual	predictions.	To	illustrate,	take	this	quick	quiz:	How	many	black	taxis
operate	in	London?

Don’t	peek	at	the	answer;	guess	first.

I	guessed	10,000,	which	is	well	off	the	correct	answer	of	about	19,000.
Because	I	guessed	low,	you’re	a	bit	more	likely	to	have	guessed	higher	than	I
did,	and	so	the	average	of	our	answers	will	tend	to	be	more	accurate.	There’s
that	regression	to	the	mean	again.	The	average	guess	from	an	informal	poll	of
13	people	in	the	office	was	indeed	closer:	11,170.

A	key	to	this	effect	is	that	the	guesses	were	independent	and	didn’t	influence
one	another.	(You	didn’t	peek,	did	you?)	The	exercise	would	be	useless	if	we
had	all	agreed	on	and	used	the	same	methodology	to	make	a	guess,	because	the
guesses	would	have	been	the	same	answer	—	the	same	potentially	quite	wrong
answer.	It	would	even	have	been	different	and	worse	if	I’d	merely	influenced



you	by	stating	my	guess	upfront.

It	would	be	great	to	have	not	one	tree,	but	many	trees,	each	producing
reasonable	but	different	and	independent	estimations	of	the	right	target	value.
Their	collective	average	prediction	should	fall	close	to	the	true	answer,	more
than	any	individual	tree’s	does.	It’s	the	randomness	in	the	process	of	building
that	helps	create	this	independence.	This	is	the	key	to	random	decision	forests.

Randomness	is	injected	by	building	many	trees,	each	of	which	sees	a	different
random	subset	of	data	—	and	even	of	features.	This	makes	the	forest	as	a
whole	less	prone	to	overfitting.	If	a	particular	feature	contains	noisy	data	or	is
deceptively	predictive	only	in	the	training	set,	then	most	trees	will	not	consider
this	problem	feature	most	of	the	time.	Most	trees	will	not	fit	the	noise	and	will
tend	to	“outvote”	the	trees	that	have	fit	the	noise	in	the	forest.

The	prediction	of	a	random	decision	forest	is	simply	a	weighted	average	of	the
trees’	predictions.	For	a	categorical	target,	this	can	be	a	majority	vote	or	the
most	probable	value	based	on	the	average	of	probabilities	produced	by	the
trees.	Random	decision	forests,	like	decision	trees,	also	support	regression,
and	the	forest’s	prediction	in	this	case	is	the	average	of	the	number	predicted
by	each	tree.

While	random	decision	forests	are	a	more	powerful	and	complex
classification	technique,	the	good	news	is	that	it’s	virtually	no	different	to	use	it
in	the	pipeline	that	has	been	developed	in	this	chapter.	Simply	drop	in	a
RandomForestClassifier	in	place	of	DecisionTreeClassifier	and	proceed	as
before.	There’s	really	no	more	code	or	API	to	understand	in	order	to	use	it.

import	org.apache.spark.ml.classification.RandomForestClassifier

val	classifier	=	new	RandomForestClassifier().

		setSeed(Random.nextLong()).

		setLabelCol("Cover_Type").

		setFeaturesCol("indexedVector").

		setPredictionCol("prediction")

Note	that	this	classifier	has	another	hyperparameter:	the	number	of	trees	to
build.	Like	the	max	bins	hyperparameter,	higher	values	should	give	better
results	up	to	a	point.	The	cost,	however,	is	that	building	many	trees	of	course
takes	many	times	longer	than	building	one.

The	accuracy	of	the	best	random	decision	forest	model	produced	from	a



similar	tuning	process	is	95%	off	the	bat	—	about	2%	better	already,	although
viewed	another	way,	that’s	a	28%	reduction	in	the	error	rate	over	the	best
decision	tree	built	previously,	from	7%	down	to	5%.	You	may	do	better	with
further	tuning.

Incidentally,	at	this	point	we	have	a	more	reliable	picture	of	feature
importance:

import	org.apache.spark.ml.classification.RandomForestClassificationModel

val	forestModel	=	bestModel.asInstanceOf[PipelineModel].

		stages.last.asInstanceOf[RandomForestClassificationModel]

forestModel.featureImportances.toArray.zip(inputCols).

		sorted.reverse.foreach(println)

...

(0.28877055118903183,Elevation)

(0.17288279582959612,soil)

(0.12105056811661499,Horizontal_Distance_To_Roadways)

(0.1121550648692802,Horizontal_Distance_To_Fire_Points)

(0.08805270405239551,wilderness)

(0.04467393191338021,Vertical_Distance_To_Hydrology)

(0.04293099150373547,Horizontal_Distance_To_Hydrology)

(0.03149644050848614,Hillshade_Noon)

(0.028408483578137605,Hillshade_9am)

(0.027185325937200706,Aspect)

(0.027075578474331806,Hillshade_3pm)

(0.015317564027809389,Slope)

Random	decision	forests	are	appealing	in	the	context	of	big	data	because	trees
are	supposed	to	be	built	independently,	and	big	data	technologies	like	Spark
and	MapReduce	inherently	need	data-parallel	problems,	where	parts	of	the
overall	solution	can	be	computed	independently	on	parts	of	the	data.	The	fact
that	trees	can,	and	should,	train	on	only	a	subset	of	features	or	input	data	makes
it	trivial	to	parallelize	building	the	trees.



Making	Predictions
Building	a	classifier,	while	an	interesting	and	nuanced	process,	is	not	the	end
goal.	The	goal	is	to	make	predictions.	This	is	the	payoff,	and	it	is
comparatively	quite	easy.

The	resulting	“best	model”	is	actually	a	whole	pipeline	of	operations,	which
encapsulate	how	input	is	transformed	for	use	with	the	model	and	includes	the
model	itself,	which	can	make	predictions.	It	can	operate	on	a	data	frame	of	new
input.	The	only	difference	from	the	data	DataFrame	we	started	with	is	that	it
lacks	the	“Cover_Type”	column.	When	we’re	making	predictions	—	especially
about	the	future,	says	Mr.	Bohr	—	the	output	is	of	course	not	known.

To	prove	it,	try	dropping	the	“Cover_Type”	from	the	test	data	input	and
obtaining	a	prediction:

bestModel.transform(unencTestData.drop("Cover_Type")).select("prediction").show()

...

+----------+

|prediction|

+----------+

|							6.0|

+----------+

The	result	should	be	6.0,	which	corresponds	to	class	7	(the	original	feature	was
1-indexed)	in	the	original	Covtype	data	set.	The	predicted	cover	type	for	the
land	described	in	this	example	is	Krummholz.	Obviously.



Where	to	Go	from	Here
This	chapter	introduced	two	related	and	important	types	of	machine	learning,
classification	and	regression,	along	with	some	foundational	concepts	in
building	and	tuning	models:	features,	vectors,	training,	and	cross-validation.	It
demonstrated	how	to	predict	a	type	of	forest	cover	from	things	like	location
and	soil	type	using	the	Covtype	data	set,	with	decision	trees	and	forests
implemented	in	Spark	MLlib.

As	with	recommenders	in	Chapter	3,	it	could	be	useful	to	continue	exploring
the	effect	of	hyperparameters	on	accuracy.	Most	decision	tree	hyperparameters
trade	time	for	accuracy:	more	bins	and	trees	generally	produce	better	accuracy
but	hit	a	point	of	diminishing	returns.

The	classifier	here	turned	out	to	be	very	accurate.	It’s	unusual	to	achieve	more
than	95%	accuracy.	In	general,	you	will	achieve	further	improvements	in
accuracy	by	including	more	features	or	transforming	existing	features	into	a
more	predictive	form.	This	is	a	common,	repeated	step	in	iteratively
improving	a	classifier	model.	For	example,	for	this	data	set,	the	two	features
encoding	horizontal	and	vertical	distance-to-surface-water	features	could
produce	a	third	feature:	straight-line	distance-to-surface-water	features.	This
might	turn	out	to	be	more	useful	than	either	original	feature.	Or,	if	it	were
possible	to	collect	more	data,	we	might	try	adding	new	information	like	soil
moisture	in	order	to	improve	classification.

Of	course,	not	all	prediction	problems	in	the	real	world	are	exactly	like	the
Covtype	data	set.	For	example,	some	problems	require	predicting	a	continuous
numeric	value,	not	a	categorical	value.	Much	of	the	same	analysis	and	code
applies	to	this	type	of	regression	problem;	the	RandomForestRegressor	class
will	be	of	use	in	this	case.

Furthermore,	decision	trees	and	forests	are	not	the	only	classification	or
regression	algorithms,	and	not	the	only	ones	implemented	in	Spark	MLlib.	For
classification,	it	includes	implementations	of:

Naïve	Bayes

Gradient	boosting

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Gradient_boosting


Logistic	regression

Multilayer	perceptron

Yes,	logistic	regression	is	a	classification	technique.	Underneath	the	hood,	it
classifies	by	predicting	a	continuous	function	of	a	class	probability.	This	detail
is	not	necessary	to	understand.

Each	of	these	algorithms	operates	quite	differently	from	decision	trees	and
forests.	However,	many	elements	are	the	same:	they	plug	into	a	Pipeline	and
operate	on	columns	in	a	data	frame,	and	have	hyperparameters	that	you	must
select	using	training,	cross-validation,	and	test	subsets	of	the	input	data.	The
same	general	principles,	with	these	other	algorithms,	can	also	be	deployed	to
model	classification	and	regression	problems.

These	have	been	examples	of	supervised	learning.	What	happens	when	some,
or	all,	of	the	target	values	are	unknown?	The	following	chapter	will	explore
what	can	be	done	in	this	situation.

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Multilayer_perceptron


Chapter	5.	Anomaly	Detection	in
Network	Traffic	with	K-means
Clustering
Sean	Owen

There	are	known	knowns;	there	are	things	that	we	know	that	we	know.	We
also	know	there	are	known	unknowns;	that	is	to	say,	we	know	there	are	some
things	we	do	not	know.	But	there	are	also	unknown	unknowns,	the	ones	we
don’t	know	we	don’t	know.
Donald	Rumsfeld

Classification	and	regression	are	powerful,	well-studied	techniques	in	machine
learning.	Chapter	4	demonstrated	using	a	classifier	as	a	predictor	of	unknown
values.	But	there	was	a	catch:	in	order	to	predict	unknown	values	for	new	data,
we	had	to	know	the	target	values	for	many	previously	seen	examples.
Classifiers	can	only	help	if	we,	the	data	scientists,	know	what	we	are	looking
for	and	can	provide	plenty	of	examples	where	input	produced	a	known	output.
These	were	collectively	known	as	supervised	learning	techniques,	because
their	learning	process	receives	the	correct	output	value	for	each	example	in	the
input.

However,	sometimes	the	correct	output	is	unknown	for	some	or	all	examples.
Consider	the	problem	of	dividing	up	an	ecommerce	site’s	customers	by	their
shopping	habits	and	tastes.	The	input	features	are	their	purchases,	clicks,
demographic	information,	and	more.	The	output	should	be	groupings	of
customers:	perhaps	one	group	will	represent	fashion-conscious	buyers,
another	will	turn	out	to	correspond	to	price-sensitive	bargain	hunters,	and	so
on.

If	you	were	asked	to	determine	this	target	label	for	each	new	customer,	you
would	quickly	run	into	a	problem	in	applying	a	supervised	learning	technique
like	a	classifier:	you	don’t	know	a	priori	who	should	be	considered	fashion-
conscious,	for	example.	In	fact,	you’re	not	even	sure	if	“fashion-conscious”	is
a	meaningful	grouping	of	the	site’s	customers	to	begin	with!

https://en.wikipedia.org/wiki/Supervised_learning


Fortunately,	unsupervised	learning	techniques	can	help.	These	techniques	do
not	learn	to	predict	a	target	value,	because	none	is	available.	They	can,
however,	learn	structure	in	data	and	find	groupings	of	similar	inputs,	or	learn
what	types	of	input	are	likely	to	occur	and	what	types	are	not.	This	chapter	will
introduce	unsupervised	learning	using	clustering	implementations	in	MLlib.

https://en.wikipedia.org/wiki/Unsupervised_learning


Anomaly	Detection
The	inherent	problem	of	anomaly	detection	is,	as	its	name	implies,	that	of
finding	unusual	things.	If	we	already	knew	what	“anomalous”	meant	for	a	data
set,	we	could	easily	detect	anomalies	in	the	data	with	supervised	learning.	An
algorithm	would	receive	inputs	labeled	“normal”	and	“anomaly”,	and	learn	to
distinguish	the	two.	However,	the	nature	of	anomalies	is	that	they	are	unknown
unknowns.	Put	another	way,	an	anomaly	that	has	been	observed	and	understood
is	no	longer	an	anomaly.

Anomaly	detection	is	often	used	to	find	fraud,	detect	network	attacks,	or
discover	problems	in	servers	or	other	sensor-equipped	machinery.	In	these
cases,	it’s	important	to	be	able	to	find	new	types	of	anomalies	that	have	never
been	seen	before	—	new	forms	of	fraud,	intrusions,	and	failure	modes	for
servers.

Unsupervised	learning	techniques	are	useful	in	these	cases	because	they	can
learn	what	input	data	normally	looks	like,	and	therefore	detect	when	new	data
is	unlike	past	data.	Such	new	data	is	not	necessarily	attacks	or	fraud;	it	is
simply	unusual,	and	therefore,	worth	further	investigation.



K-means	Clustering
Clustering	is	the	best-known	type	of	unsupervised	learning.	Clustering
algorithms	try	to	find	natural	groupings	in	data.	Data	points	that	are	like	one
another	but	unlike	others	are	likely	to	represent	a	meaningful	grouping,	so
clustering	algorithms	try	to	put	such	data	into	the	same	cluster.

K-means	clustering	may	be	the	most	widely	used	clustering	algorithm.	It
attempts	to	detect	k	clusters	in	a	data	set,	where	k	is	given	by	the	data	scientist.	k
is	a	hyperparameter	of	the	model,	and	the	right	value	will	depend	on	the	data
set.	In	fact,	choosing	a	good	value	for	k	will	be	a	central	plot	point	in	this
chapter.

What	does	“like”	mean	when	the	data	set	contains	information	like	customer
activity?	Or	transactions?	K-means	requires	a	notion	of	distance	between	data
points.	It	is	common	to	use	simple	Euclidean	distance	to	measure	distance
between	data	points	with	K-means,	and	as	it	happens,	this	is	the	only	distance
function	supported	by	Spark	MLlib	as	of	this	writing.	The	Euclidean	distance	is
defined	for	data	points	whose	features	are	all	numeric.	“Like”	points	are	those
whose	intervening	distance	is	small.

To	K-means,	a	cluster	is	simply	a	point:	the	center	of	all	the	points	that	make
up	the	cluster.	These	are,	in	fact,	just	feature	vectors	containing	all	numeric
features,	and	can	be	called	vectors.	However,	it	may	be	more	intuitive	to	think
of	them	as	points	here,	because	they	are	treated	as	points	in	a	Euclidean	space.

This	center	is	called	the	cluster	centroid,	and	is	the	arithmetic	mean	of	the
points	—	hence	the	name	K-means.	To	start,	the	algorithm	picks	some	data
points	as	the	initial	cluster	centroids.	Then	each	data	point	is	assigned	to	the
nearest	centroid.	Then	for	each	cluster,	a	new	cluster	centroid	is	computed	as
the	mean	of	the	data	points	just	assigned	to	that	cluster.	This	process	is
repeated.

Enough	about	K-means	for	now.	Some	more	interesting	details	will	emerge	in
the	use	case	to	follow.

https://en.wikipedia.org/wiki/K-means_clustering


Network	Intrusion
So-called	cyberattacks	are	increasingly	visible	in	the	news.	Some	attacks
attempt	to	flood	a	computer	with	network	traffic	to	crowd	out	legitimate
traffic.	But	in	other	cases,	attacks	attempt	to	exploit	flaws	in	networking
software	to	gain	unauthorized	access	to	a	computer.	While	it’s	quite	obvious
when	a	computer	is	being	bombarded	with	traffic,	detecting	an	exploit	can	be
like	searching	for	a	needle	in	an	incredibly	large	haystack	of	network	requests.

Some	exploit	behaviors	follow	known	patterns.	For	example,	accessing	every
port	on	a	machine	in	rapid	succession	is	not	something	any	normal	software
program	should	ever	need	to	do.	However,	it	is	a	typical	first	step	for	an
attacker	looking	for	services	running	on	the	computer	that	may	be	exploitable.

If	you	were	to	count	the	number	of	distinct	ports	accessed	by	a	remote	host	in	a
short	time,	you	would	have	a	feature	that	probably	predicts	a	port-scanning
attack	quite	well.	A	handful	is	probably	normal;	hundreds	indicates	an	attack.
The	same	goes	for	detecting	other	types	of	attacks	from	other	features	of
network	connections	—	number	of	bytes	sent	and	received,	TCP	errors,	and	so
forth.

But	what	about	those	unknown	unknowns?	The	biggest	threat	may	be	the	one
that	has	never	yet	been	detected	and	classified.	Part	of	detecting	potential
network	intrusions	is	detecting	anomalies.	These	are	connections	that	aren’t
known	to	be	attacks	but	do	not	resemble	connections	that	have	been	observed
in	the	past.

Here,	unsupervised	learning	techniques	like	K-means	can	be	used	to	detect
anomalous	network	connections.	K-means	can	cluster	connections	based	on
statistics	about	each	of	them.	The	resulting	clusters	themselves	aren’t
interesting	per	se,	but	they	collectively	define	types	of	connections	that	are	like
past	connections.	Anything	not	close	to	a	cluster	could	be	anomalous.	Clusters
are	interesting	insofar	as	they	define	regions	of	normal	connections;
everything	else	outside	is	unusual	and	potentially	anomalous.



KDD	Cup	1999	Data	Set
The	KDD	Cup	was	an	annual	data	mining	competition	organized	by	a	special
interest	group	of	the	Assocation	for	Computing	Machinery	(ACM).	Each	year,
a	machine	learning	problem	was	posed,	along	with	a	data	set,	and	researchers
were	invited	to	submit	a	paper	detailing	their	best	solution	to	the	problem.	It
was	like	Kaggle	before	there	was	Kaggle.	In	1999,	the	topic	was	network
intrusion,	and	the	data	set	is	still	available.	The	remainder	of	this	chapter	will
walk	through	building	a	system	to	detect	anomalous	network	traffic	using
Spark,	by	learning	from	this	data.

Don’t	use	this	data	set	to	build	a	real	network	intrusion	system!	The	data	did	not	necessarily
reflect	real	network	traffic	at	the	time	—	even	if	it	did,	it	reflects	traffic	patterns	from	17	years
ago.

Fortunately,	the	organizers	had	already	processed	raw	network	packet	data	into
summary	information	about	individual	network	connections.	The	data	set	is
about	708	MB	in	size	and	contains	about	4.9	million	connections.	This	is	large,
if	not	massive,	and	is	certainly	sufficient	for	our	purposes	here.	For	each
connection,	the	data	set	contains	information	like	the	number	of	bytes	sent,
login	attempts,	TCP	errors,	and	so	on.	Each	connection	is	one	line	of	CSV-
formatted	data	set,	containing	38	features,	like	this:

0,tcp,http,SF,215,45076,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,

0.00,0.00,0.00,0.00,1.00,0.00,0.00,0,0,0.00,

0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.

This	connection,	for	example,	was	a	TCP	connection	to	an	HTTP	service	—
215	bytes	were	sent	and	45,706	bytes	were	received.	The	user	was	logged	in,
and	so	on.	Many	features	are	counts,	like	num_file_creations	in	the	17th
column.

Many	features	take	on	the	value	0	or	1,	indicating	the	presence	or	absence	of	a
behavior,	like	su_attempted	in	the	15th	column.	They	look	like	the	one-hot

http://www.kdd.org/kdd-cup
https://www.kaggle.com
https://bit.ly/1ALCuZN


encoded	categorical	features	from	Chapter	4,	but	are	not	grouped	and	related
in	the	same	way.	Each	is	like	a	yes/no	feature,	and	is	therefore	arguably	a
categorical	feature.	It	is	not	always	valid	to	translate	categorical	features	as
numbers	and	treat	them	as	if	they	had	an	ordering.	However,	in	the	special	case
of	a	binary	categorical	feature,	in	most	machine	learning	algorithms,	mapping
these	to	a	numeric	feature	taking	on	values	0	and	1	will	work	well.

The	rest	are	ratios	like	dst_host_srv_rerror_rate	in	the	next-to-last	column,
and	take	on	values	from	0.0	to	1.0,	inclusive.

Interestingly,	a	label	is	given	in	the	last	field.	Most	connections	are	labeled
normal.,	but	some	have	been	identified	as	examples	of	various	types	of
network	attacks.	These	would	be	useful	in	learning	to	distinguish	a	known
attack	from	a	normal	connection,	but	the	problem	here	is	anomaly	detection
and	finding	potentially	new	and	unknown	attacks.	This	label	will	be	mostly	set
aside	for	our	purposes.



A	First	Take	on	Clustering
Unzip	the	kddcup.data.gz	data	file	and	copy	it	into	HDFS.	This	example,	like
others,	will	assume	the	file	is	available	at	/user/ds/kddcup.data.	Open	the
spark-shell,	and	load	the	CSV	data	as	a	data	frame.	It’s	a	CSV	file	again,	but
without	header	information.	It’s	necessary	to	supply	column	names	as	given	in
the	accompanying	kddcup.names	file.

val	dataWithoutHeader	=	spark.read.

		option("inferSchema",	true).

		option("header",	false).

		csv("hdfs:///user/ds/kddcup.data")

val	data	=	dataWithoutHeader.toDF(

		"duration",	"protocol_type",	"service",	"flag",

		"src_bytes",	"dst_bytes",	"land",	"wrong_fragment",	"urgent",

		"hot",	"num_failed_logins",	"logged_in",	"num_compromised",

		"root_shell",	"su_attempted",	"num_root",	"num_file_creations",

		"num_shells",	"num_access_files",	"num_outbound_cmds",

		"is_host_login",	"is_guest_login",	"count",	"srv_count",

		"serror_rate",	"srv_serror_rate",	"rerror_rate",	"srv_rerror_rate",

		"same_srv_rate",	"diff_srv_rate",	"srv_diff_host_rate",

		"dst_host_count",	"dst_host_srv_count",

		"dst_host_same_srv_rate",	"dst_host_diff_srv_rate",

		"dst_host_same_src_port_rate",	"dst_host_srv_diff_host_rate",

		"dst_host_serror_rate",	"dst_host_srv_serror_rate",

		"dst_host_rerror_rate",	"dst_host_srv_rerror_rate",

		"label")

Begin	by	exploring	the	data	set.	What	labels	are	present	in	the	data,	and	how
many	are	there	of	each?	The	following	code	simply	counts	by	label	and	prints
the	results	in	descending	order	by	count.

data.select("label").groupBy("label").count().orderBy($"count".desc).show(25)

...

+----------------+-------+

|											label|		count|

+----------------+-------+

|										smurf.|2807886|

|								neptune.|1072017|

|									normal.|	972781|

|										satan.|		15892|

...

|												phf.|						4|

|											perl.|						3|

|												spy.|						2|

+----------------+-------+



There	are	23	distinct	labels,	and	the	most	frequent	are	smurf.	and	neptune.
attacks.

Note	that	the	data	contains	nonnumeric	features.	For	example,	the	second
column	may	be	tcp,	udp,	or	icmp,	but	K-means	clustering	requires	numeric
features.	The	final	label	column	is	also	nonnumeric.	To	begin,	these	will
simply	be	ignored.

Aside	from	this,	creating	a	K-means	clustering	of	the	data	follows	the	same
pattern	as	was	seen	in	Chapter	4.	A	VectorAssembler	creates	a	feature	vector,	a
KMeans	implementation	creates	a	model	from	the	feature	vectors,	and	a
Pipeline	stitches	it	all	together.	From	the	resulting	model,	it’s	possible	to
extract	and	examine	the	cluster	centers.

import	org.apache.spark.ml.Pipeline

import	org.apache.spark.ml.clustering.{KMeans,	KMeansModel}

import	org.apache.spark.ml.feature.VectorAssembler

val	numericOnly	=	data.drop("protocol_type",	"service",	"flag").cache()

val	assembler	=	new	VectorAssembler().

		setInputCols(numericOnly.columns.filter(_	!=	"label")).

		setOutputCol("featureVector")

val	kmeans	=	new	KMeans().

		setPredictionCol("cluster").

		setFeaturesCol("featureVector")

val	pipeline	=	new	Pipeline().setStages(Array(assembler,	kmeans))

val	pipelineModel	=	pipeline.fit(numericOnly)

val	kmeansModel	=	pipelineModel.stages.last.asInstanceOf[KMeansModel]

kmeansModel.clusterCenters.foreach(println)

...

[48.34019491959669,1834.6215497618625,826.2031900016945,793027561892E-4,...

[10999.0,0.0,1.309937401E9,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,...

It’s	not	easy	to	interpret	the	numbers	intuitively,	but	each	of	these	represents	the
center	(also	known	as	centroid)	of	one	of	the	clusters	that	the	model	produced.
The	values	are	the	coordinates	of	the	centroid	in	terms	of	each	of	the	numeric
input	features.

Two	vectors	are	printed,	meaning	K-means	was	fitting	k=2	clusters	to	the	data.
For	a	complex	data	set	that	is	known	to	exhibit	at	least	23	distinct	types	of
connections,	this	is	almost	certainly	not	enough	to	accurately	model	the	distinct
groupings	within	the	data.



This	is	a	good	opportunity	to	use	the	given	labels	to	get	an	intuitive	sense	of
what	went	into	these	two	clusters	by	counting	the	labels	within	each	cluster.

val	withCluster	=	pipelineModel.transform(numericOnly)

withCluster.select("cluster",	"label").

		groupBy("cluster",	"label").count().

		orderBy($"cluster",	$"count".desc).

		show(25)

...

+-------+----------------+-------+

|cluster|											label|		count|

+-------+----------------+-------+

|						0|										smurf.|2807886|

|						0|								neptune.|1072017|

|						0|									normal.|	972781|

|						0|										satan.|		15892|

|						0|								ipsweep.|		12481|

...

|						0|												phf.|						4|

|						0|											perl.|						3|

|						0|												spy.|						2|

|						1|						portsweep.|						1|

+-------+----------------+-------+

The	result	shows	that	the	clustering	was	not	at	all	helpful.	Only	one	data	point
ended	up	in	cluster	1!



Choosing	k
Two	clusters	are	plainly	insufficient.	How	many	clusters	are	appropriate	for
this	data	set?	It’s	clear	that	there	are	23	distinct	patterns	in	the	data,	so	it	seems
that	k	could	be	at	least	23,	or	likely	even	more.	Typically,	many	values	of	k	are
tried	to	find	the	best	one.	But	what	is	“best”?

A	clustering	could	be	considered	good	if	each	data	point	were	near	its	closest
centroid,	where	“near”	is	defined	by	the	Euclidean	distance.	This	is	a	simple,
common	way	to	evaluate	the	quality	of	a	clustering,	by	the	mean	of	these
distances	over	all	points,	or	sometimes,	the	mean	of	the	distances	squared.	In
fact,	KMeansModel	offers	a	computeCost	method	that	computes	the	sum	of
squared	distances	and	can	easily	be	used	to	compute	the	mean	squared	distance.

Unfortunately,	there	is	no	simple	Evaluator	implementation	to	compute	this
measure,	not	like	those	available	to	compute	multiclass	classification	metrics.
It’s	simple	enough	to	manually	evaluate	the	clustering	cost	for	several	values
of	k.	Note	that	this	code	could	take	10	minutes	or	more	to	run.

import	org.apache.spark.sql.DataFrame

def	clusteringScore0(data:	DataFrame,	k:	Int):	Double	=	{

		val	assembler	=	new	VectorAssembler().

				setInputCols(data.columns.filter(_	!=	"label")).

				setOutputCol("featureVector")

		val	kmeans	=	new	KMeans().

				setSeed(Random.nextLong()).

				setK(k).

				setPredictionCol("cluster").

				setFeaturesCol("featureVector")

		val	pipeline	=	new	Pipeline().setStages(Array(assembler,	kmeans))

		val	kmeansModel	=	pipeline.fit(data).stages.last.asInstanceOf[KMeansModel]

		kmeansModel.computeCost(assembler.transform(data))	/	data.count()	

}

(20	to	100	by	20).map(k	=>	(k,	clusteringScore0(numericOnly,	k))).

		foreach(println)

...

(20,6.649218115128446E7)

(40,2.5031424366033625E7)

(60,1.027261913057096E7)

(80,1.2514131711109027E7)

(100,7235531.565096531)



Compute	mean	from	total	squared	distance	(“cost”)
The	(x	to	y	by	z)	syntax	is	a	Scala	idiom	for	creating	a	collection	of
numbers	between	a	start	and	end	(inclusive),	with	a	given	difference	between
successive	elements.	This	is	a	compact	way	to	create	the	values	“20,	40,	…,
100”	for	k,	and	then	do	something	with	each.

The	printed	result	shows	that	the	score	decreases	as	k	increases.	Note	that
scores	are	shown	in	scientific	notation;	the	first	value	is	over	107,	not	just	a	bit
over	6.

Again,	your	values	will	be	somewhat	different.	The	clustering	depends	on	a	randomly	chosen
initial	set	of	centroids.

However,	this	much	is	obvious.	As	more	clusters	are	added,	it	should	always
be	possible	to	put	data	points	closer	to	the	nearest	centroid.	In	fact,	if	k	is
chosen	to	equal	the	number	of	data	points,	the	average	distance	will	be	0
because	every	point	will	be	its	own	cluster	of	one!

Worse,	in	the	preceding	results,	the	distance	for	k=80	is	higher	than	for	k=60.
This	shouldn’t	happen	because	higher	k	always	permits	at	least	as	good	a
clustering	as	a	lower	k.	The	problem	is	that	K-means	is	not	necessarily	able	to
find	the	optimal	clustering	for	a	given	k.	Its	iterative	process	can	converge
from	a	random	starting	point	to	a	local	minimum,	which	may	be	good	but	is
not	optimal.

This	is	still	true	even	when	more	intelligent	methods	are	used	to	choose	initial
centroids.	K-means++	and	K-means||	are	variants	of	selection	algorithms	that
are	more	likely	to	choose	diverse,	separated	centroids	and	lead	more	reliably
to	a	good	clustering.	Spark	MLlib,	in	fact,	implements	K-means||.	However,	all
still	have	an	element	of	randomness	in	selection	and	can’t	guarantee	an	optimal
clustering.

The	random	starting	set	of	clusters	chosen	for	k=80	perhaps	led	to	a
particularly	suboptimal	clustering,	or	it	may	have	stopped	early	before	it
reached	its	local	optimum.

We	can	improve	it	by	running	the	iteration	longer.	The	algorithm	has	a

https://stanford.io/1ALCOaN


threshold	via	setTol()	that	controls	the	minimum	amount	of	cluster	centroid
movement	considered	significant;	lower	values	mean	the	K-means	algorithm
will	let	the	centroids	continue	to	move	longer.	Increasing	the	maximum
number	of	iterations	with	setMaxIter()	also	prevents	it	from	potentially
stopping	too	early	at	the	cost	of	possibly	more	computation.

def	clusteringScore1(data:	DataFrame,	k:	Int):	Double	=	{

		...

				setMaxIter(40).	

				setTol(1.0e-5)	

		...

}

(20	to	100	by	20).map(k	=>	(k,	clusteringScore1(numericOnly,	k))).

		foreach(println)

Increase	from	default	20

Decrease	from	default	1.0e-4
This	time,	at	least	the	scores	decrease	consistently:

(20,1.8041795813813403E8)

(40,6.33056876207124E7)

(60,9474961.544965891)

(80,9388117.93747141)

(100,8783628.926311461)

We	want	to	find	a	point	past	which	increasing	k	stops	reducing	the	score	much
—	or	an	“elbow”	in	a	graph	of	k	versus	score,	which	is	generally	decreasing
but	eventually	flattens	out.	Here,	it	seems	to	be	decreasing	notably	past	100.
The	right	value	of	k	may	be	past	100.



Visualization	with	SparkR
At	this	point,	it	could	be	useful	to	step	back	and	understand	more	about	the	data
before	clustering	again.	In	particular,	looking	at	a	plot	of	the	data	points	could
be	helpful.

Spark	itself	has	no	tools	for	visualization,	but	the	popular	open	source
statistical	environment	R	has	libraries	for	both	data	exploration	and	data
visualization.	Furthermore,	Spark	also	provides	some	basic	integration	with	R
via	SparkR.	This	brief	section	will	demonstrate	using	R	and	SparkR	to	cluster
the	data	and	explore	the	clustering.

SparkR	is	a	variant	of	the	spark-shell	used	throughout	this	book,	and	is
invoked	with	the	command	sparkR.	It	runs	a	local	R	interpreter,	like	spark-
shell	runs	a	variant	of	the	Scala	shell	as	a	local	process.	The	machine	that	runs
sparkR	needs	a	local	installation	of	R,	which	is	not	included	with	Spark.	This
can	be	installed,	for	example,	with	sudo	apt-get	install	r-base	on	Linux
distributions	like	Ubuntu,	or	brew	install	R	with	Homebrew	on	macOS.

sparkR	is	a	command-line	shell	environment,	like	R.	To	view	visualizations,
it’s	necessary	to	run	these	commands	within	an	IDE-like	environment	that	can
display	images.	RStudio	is	an	IDE	for	R	(and	works	with	SparkR);	it	runs	on	a
desktop	operating	system	so	it	will	only	be	usable	here	if	you	are
experimenting	with	Spark	locally	rather	than	on	a	cluster.

If	you	are	running	Spark	locally,	download	the	free	version	of	RStudio	and
install	it.	If	not,	then	most	of	the	rest	of	this	example	can	still	be	run	with
sparkR	on	a	command	line;	for	example,	on	a	cluster.	It	won’t	be	possible	to
display	visualizations	this	way	though.

If	running	via	RStudio,	launch	the	IDE	and	configure	SPARK_HOME	and
JAVA_HOME,	if	your	local	environment	does	not	already	set	them,	to	point	to	the
Spark	and	JDK	installation	directories,	respectively.

Sys.setenv(SPARK_HOME	=	"/path/to/spark")	

Sys.setenv(JAVA_HOME	=	"/path/to/java")

library(SparkR,	lib.loc	=	c(file.path(Sys.getenv("SPARK_HOME"),	"R",	"lib")))

sparkR.session(master	=	"local[*]",

		sparkConfig	=	list(spark.driver.memory	=	"4g"))

https://www.r-project.org
https://spark.apache.org/docs/latest/sparkr.html
http://brew.sh/
https://www.rstudio.com
http://bit.ly/2qdhxHy


Replace	with	actual	paths,	of	course.
Note	that	these	steps	aren’t	needed	if	you	are	running	sparkR	on	the	command
line.	Instead,	it	accepts	command-line	configuration	parameters	like	--driver-
memory,	just	like	spark-shell.

SparkR	is	an	R-language	wrapper	around	the	same	DataFrame	and	MLlib	APIs
that	have	been	demonstrated	in	this	chapter.	It’s	therefore	possible	to	recreate	a
K-means	simple	clustering	of	the	data:

clusters_data	<-	read.df("/path/to/kddcup.data",	"csv",	

																									inferSchema	=	"true",	header	=	"false")

colnames(clusters_data)	<-	c(	

		"duration",	"protocol_type",	"service",	"flag",

		"src_bytes",	"dst_bytes",	"land",	"wrong_fragment",	"urgent",

		"hot",	"num_failed_logins",	"logged_in",	"num_compromised",

		"root_shell",	"su_attempted",	"num_root",	"num_file_creations",

		"num_shells",	"num_access_files",	"num_outbound_cmds",

		"is_host_login",	"is_guest_login",	"count",	"srv_count",

		"serror_rate",	"srv_serror_rate",	"rerror_rate",	"srv_rerror_rate",

		"same_srv_rate",	"diff_srv_rate",	"srv_diff_host_rate",

		"dst_host_count",	"dst_host_srv_count",

		"dst_host_same_srv_rate",	"dst_host_diff_srv_rate",

		"dst_host_same_src_port_rate",	"dst_host_srv_diff_host_rate",

		"dst_host_serror_rate",	"dst_host_srv_serror_rate",

		"dst_host_rerror_rate",	"dst_host_srv_rerror_rate",

		"label")

numeric_only	<-	cache(drop(clusters_data,	

																											c("protocol_type",	"service",	"flag",	"label")))

kmeans_model	<-	spark.kmeans(numeric_only,	~	.,	

																													k	=	100,	maxIter	=	40,	initMode	=	"k-means||")

Replace	with	path	to	kddcup.data.

Name	columns.

Drop	nonnumeric	columns	again.

~	.	means	all	columns.

From	here,	it’s	straightforward	to	assign	a	cluster	to	each	data	point.	The
operations	above	show	usage	of	the	SparkR	APIs,	which	naturally	correspond



to	core	Spark	APIs	but	are	expressed	as	R	libraries	in	R-like	syntax.	The	actual
clustering	is	executed	using	the	same	JVM-based,	Scala-language
implementation	in	MLlib.	These	operations	are	effectively	a	handle	or	remote
control	to	distributed	operations	that	are	not	executing	in	R.

R	has	its	own	rich	set	of	libraries	for	analysis,	and	its	own	similar	concept	of	a
data	frame.	It	is	sometimes	useful,	therefore,	to	pull	some	data	down	into	the	R
interpreter	in	order	to	be	able	to	use	these	native	R	libraries,	which	are
unrelated	to	Spark.

Of	course,	R	and	its	libraries	are	not	distributed,	and	so	it’s	not	feasible	to	pull
the	whole	data	set	of	4,898,431	data	points	into	R.	However,	it’s	easy	to	pull
only	a	sample:

clustering	<-	predict(kmeans_model,	numeric_only)

clustering_sample	<-	collect(sample(clustering,	FALSE,	0.01))	

str(clustering_sample)

...

'data.frame':	48984	obs.	of		39	variables:

	$	duration																			:	int		0	0	0	0	0	0	0	0	0	0	...

	$	src_bytes																		:	int		181	185	162	254	282	310	212	214	181	...

	$	dst_bytes																		:	int		5450	9020	4528	849	424	1981	2917	3404	...

	$	land																							:	int		0	0	0	0	0	0	0	0	0	0	...

...

	$	prediction																	:	int		33	33	33	0	0	0	0	0	33	33	...

1%	sample	without	replacement
clustering_sample	is	actually	a	local	R	data	frame,	not	a	Spark	DataFrame,	so
it	can	be	manipulated	like	any	other	data	in	R.	Above,	str()	shows	the
structure	of	the	data	frame.

For	example,	it’s	possible	to	extract	the	cluster	assignment	and	then	show
statistics	about	the	distribution	of	assignments:

clusters	<-	clustering_sample["prediction"]	

data	<-	data.matrix(within(clustering_sample,	rm("prediction")))	

table(clusters)

...

clusters

				0				11				14				18				23				25				28				30				31				33				36				...

47294					3					1					2					2			308			105					1				27		1219				15				...



Only	the	clustering	assignment	column

Everything	but	the	clustering	assignment
For	example,	this	shows	that	most	points	fell	into	cluster	0.	Although	much
more	could	be	done	with	this	data	in	R,	further	coverage	of	this	is	beyond	the
scope	of	this	book.

To	visualize	the	data,	a	library	called	rgl	is	required.	It	will	only	be	functional
if	running	this	example	in	RStudio.	First,	install	(once)	and	load	the	library:

install.packages("rgl")

library(rgl)

Note	that	R	may	prompt	you	to	download	other	packages	or	compiler	tools	to
complete	installation,	because	installing	the	package	means	compiling	its
source	code.

This	data	set	is	38-dimensional.	It	will	have	to	be	projected	down	into	at	most
three	dimensions	in	order	to	visualize	it	with	a	random	projection:

random_projection	<-	matrix(data	=	rnorm(3*ncol(data)),	ncol	=	3)	

random_projection_norm	<-

		random_projection	/	sqrt(rowSums(random_projection*random_projection))

projected_data	<-	data.frame(data	%*%	random_projection_norm)	

Make	a	random	3D	projection	and	normalize

Project	and	make	a	new	data	frame
This	creates	a	3D	data	set	out	of	a	38D	data	set	by	choosing	three	random	unit
vectors	and	projecting	the	data	onto	them.	This	is	a	simplistic,	rough-and-
ready	form	of	dimension	reduction.	Of	course,	there	are	more	sophisticated
dimension	reduction	algorithms,	like	principal	component	analysis	(PCA)	or
the	singular	value	decomposition	(SVD).	These	are	available	in	R	but	take
much	longer	to	run.	For	purposes	of	visualization	in	this	example,	a	random
projection	achieves	much	the	same	result,	faster.

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition


Finally,	the	clustered	points	can	be	plotted	in	an	interactive	3D	visualization:

num_clusters	<-	max(clusters)

palette	<-	rainbow(num_clusters)

colors	=	sapply(clusters,	function(c)	palette[c])

plot3d(projected_data,	col	=	colors,	size	=	10)

Note	that	this	will	require	running	RStudio	in	an	environment	that	supports	the
rgl	library	and	graphics.	For	example,	on	macOS,	it	requires	that	X11	from
Apple’s	Developer	Tools	be	installed.

The	resulting	visualization	in	Figure	5-1	shows	data	points	in	3D	space.	Many
points	fall	on	top	of	one	another,	and	the	result	is	sparse	and	hard	to	interpret.
However,	the	dominant	feature	of	the	visualization	is	its	L	shape.	The	points
seem	to	vary	along	two	distinct	dimensions,	and	little	in	other	dimensions.

This	makes	sense	because	the	data	set	has	two	features	that	are	on	a	much
larger	scale	than	the	others.	Whereas	most	features	have	values	between	0	and
1,	the	bytes-sent	and	bytes-received	features	vary	from	0	to	tens	of	thousands.
The	Euclidean	distance	between	points	is	therefore	almost	completely
determined	by	these	two	features.	It’s	almost	as	if	the	other	features	don’t	exist!
So	it’s	important	to	normalize	away	these	differences	in	scale	to	put	features
on	near-equal	footing.



Feature	Normalization
We	can	normalize	each	feature	by	converting	it	to	a	standard	score.	This	means
subtracting	the	mean	of	the	feature’s	values	from	each	value,	and	dividing	by
the	standard	deviation,	as	shown	in	the	standard	score	equation:

https://en.wikipedia.org/wiki/Standard_score


Figure	5-1.	Random	3D	projection

In	fact,	subtracting	means	has	no	effect	on	the	clustering	because	the
subtraction	effectively	shifts	all	the	data	points	by	the	same	amount	in	the	same
directions.	This	does	not	affect	interpoint	Euclidean	distances.

MLlib	provides	StandardScaler,	a	component	that	can	perform	this	kind	of
standardization	and	be	easily	added	to	the	clustering	pipeline.

We	can	run	the	same	test	with	normalized	data	on	a	higher	range	of	k:

import	org.apache.spark.ml.feature.StandardScaler

def	clusteringScore2(data:	DataFrame,	k:	Int):	Double	=	{

		val	assembler	=	new	VectorAssembler().

				setInputCols(data.columns.filter(_	!=	"label")).



				setOutputCol("featureVector")

		val	scaler	=	new	StandardScaler()

				.setInputCol("featureVector")

				.setOutputCol("scaledFeatureVector")

				.setWithStd(true)

				.setWithMean(false)

		val	kmeans	=	new	KMeans().

				setSeed(Random.nextLong()).

				setK(k).

				setPredictionCol("cluster").

				setFeaturesCol("scaledFeatureVector").

				setMaxIter(40).

				setTol(1.0e-5)

		val	pipeline	=	new	Pipeline().setStages(Array(assembler,	scaler,	kmeans))

		val	pipelineModel	=	pipeline.fit(data)

		val	kmeansModel	=	pipelineModel.stages.last.asInstanceOf[KMeansModel]

		kmeansModel.computeCost(pipelineModel.transform(data))	/	data.count()

}

(60	to	270	by	30).map(k	=>	(k,	clusteringScore2(numericOnly,	k))).

		foreach(println)

This	has	helped	put	dimensions	on	more	equal	footing,	and	the	absolute
distances	between	points	(and	thus	the	cost)	is	much	smaller	in	absolute	terms.
However,	there	isn’t	yet	an	obvious	value	of	k	beyond	which	increasing	it	does
little	to	improve	the	cost:

(60,1.2454250178069293)

(90,0.7767730051608682)

(120,0.5070473497003614)

(150,0.4077081720067704)

(180,0.3344486714980788)

(210,0.276237617334138)

(240,0.24571877339169032)

(270,0.21818167354866858)

Another	3D	visualization	of	the	normalized	data	points	reveals	a	richer
structure,	as	expected.	Some	points	are	spaced	in	regular,	discrete	intervals	in	a
direction;	these	are	likely	projections	of	discrete	dimensions	in	the	data,	like
counts.	With	100	clusters,	it’s	hard	to	make	out	which	points	come	from	which
clusters.	One	large	cluster	seems	to	dominate,	and	many	clusters	correspond	to
small	compact	subregions	(some	of	which	are	omitted	from	this	zoomed	detail
of	the	entire	3D	visualization).	The	result,	shown	in	Figure	5-2,	does	not
necessarily	advance	the	analysis	but	is	an	interesting	sanity	check.



Figure	5-2.	Random	3D	projection,	normalized



Categorical	Variables
Normalization	was	a	valuable	step	forward,	but	more	can	be	done	to	improve
the	clustering.	In	particular,	several	features	have	been	left	out	entirely	because
they	aren’t	numeric.	This	is	throwing	away	valuable	information.	Adding	them
back	in	some	form	should	produce	a	better-informed	clustering.

Earlier,	three	categorical	features	were	excluded	because	nonnumeric	features
can’t	be	used	with	the	Euclidean	distance	function	that	K-means	uses	in	MLlib.
This	is	the	reverse	of	the	issue	noted	in	Chapter	4,	where	numeric	features
were	used	to	represent	categorical	values	but	a	categorical	feature	was	desired.

The	categorical	features	can	translate	into	several	binary	indicator	features
using	one-hot	encoding,	which	can	be	viewed	as	numeric	dimensions.	For
example,	the	second	column	contains	the	protocol	type:	tcp,	udp,	or	icmp.	This
feature	could	be	thought	of	as	three	features,	as	if	features	“is	TCP,”	“is	UDP,”
and	“is	ICMP”	were	in	the	data	set.	The	single	feature	value	tcp	might	become
1,0,0;	udp	might	be	0,1,0;	and	so	on.

Here	again,	MLlib	provides	components	that	implement	this	transformation.	In
fact,	one-hot-encoding	string-valued	features	like	protocol_type	is	actually	a
two-step	process.	First,	the	string	values	are	converted	to	integer	indices	like	0,
1,	2,	and	so	on	using	StringIndexer.	Then	these	integer	indices	are	encoded
into	a	vector	with	OneHotEncoder.	These	two	steps	can	be	thought	of	as	a	small
Pipeline	in	themselves.

import	org.apache.spark.ml.feature.{OneHotEncoder,	StringIndexer}

def	oneHotPipeline(inputCol:	String):	(Pipeline,	String)	=	{

		val	indexer	=	new	StringIndexer().

				setInputCol(inputCol).

				setOutputCol(inputCol	+	"_indexed")

		val	encoder	=	new	OneHotEncoder().

				setInputCol(inputCol	+	"_indexed").

				setOutputCol(inputCol	+	"_vec")

		val	pipeline	=	new	Pipeline().setStages(Array(indexer,	encoder))

		(pipeline,	inputCol	+	"_vec")	

}



Return	Pipeline	and	name	of	output	vector	column
This	method	produces	a	Pipeline	that	can	be	added	as	a	component	in	the
overall	clustering	pipeline;	pipelines	can	be	composed.	All	that	is	left	is	to
make	sure	to	add	the	new	vector	output	columns	into	VectorAssembler’s	output
and	proceed	as	before	with	scaling,	clustering,	and	evaluation.	The	source
code	is	omitted	for	brevity	here,	but	can	be	found	in	the	repository
accompanying	this	chapter.

(60,39.739250062068685)

(90,15.814341529964691)

(120,3.5008631362395413)

(150,2.2151974068685547)

(180,1.587330730808905)

(210,1.3626704802348888)

(240,1.1202477806210747)

(270,0.9263659836264369)

These	sample	results	suggest,	possibly,	k=180	as	a	value	where	the	score
flattens	out	a	bit.	At	least	the	clustering	is	now	using	all	input	features.



Using	Labels	with	Entropy
Earlier,	we	used	the	given	label	for	each	data	point	to	create	a	quick	sanity
check	of	the	quality	of	the	clustering.	This	notion	can	be	formalized	further
and	used	as	an	alternative	means	of	evaluating	clustering	quality,	and	therefore,
of	choosing	k.

The	labels	tell	us	something	about	the	true	nature	of	each	data	point.	A	good
clustering,	it	seems,	should	agree	with	these	human-applied	labels.	It	should	put
together	points	that	share	a	label	frequently	and	not	lump	together	points	of
many	different	labels.	It	should	produce	clusters	with	relatively	homogeneous
labels.

You	may	recall	from	Chapter	4	that	we	have	metrics	for	homogeneity:	Gini
impurity	and	entropy.	These	are	functions	of	the	proportions	of	labels	in	each
cluster,	and	produce	a	number	that	is	low	when	the	proportions	are	skewed
toward	few,	or	one,	label.	Entropy	will	be	used	here	for	illustration.

def	entropy(counts:	Iterable[Int]):	Double	=	{

		val	values	=	counts.filter(_	>	0)

		val	n	=	values.map(_.toDouble).sum

		values.map	{	v	=>

				val	p	=	v	/	n

				-p	*	math.log(p)

		}.sum

}

A	good	clustering	would	have	clusters	whose	collections	of	labels	are
homogeneous	and	so	have	low	entropy.	A	weighted	average	of	entropy	can
therefore	be	used	as	a	cluster	score:

val	clusterLabel	=	pipelineModel.transform(data).

		select("cluster",	"label").as[(Int,	String)]	

val	weightedClusterEntropy	=	clusterLabel.

		groupByKey	{	case	(cluster,	_)	=>	cluster	}.	

		mapGroups	{	case	(_,	clusterLabels)	=>

				val	labels	=	clusterLabels.map	{	case	(_,	label)	=>	label	}.toSeq

				val	labelCounts	=	labels.groupBy(identity).values.map(_.size)	

				labels.size	*	entropy(labelCounts)

		}.collect()

weightedClusterEntropy.sum	/	data.count()	



Predict	cluster	for	each	datum

Extract	collections	of	labels,	per	cluster

Count	labels	in	collections

Average	entropy	weighted	by	cluster	size
As	before,	this	analysis	can	be	used	to	obtain	some	idea	of	a	suitable	value	of	k.
Entropy	will	not	necessarily	decrease	as	k	increases,	so	it	is	possible	to	look
for	a	local	minimum	value.	Here	again,	results	suggest	k=180	is	a	reasonable
choice	because	its	score	is	actually	lower	than	150	and	210:

(60,0.03475331900669869)

(90,0.051512668026335535)

(120,0.02020028911919293)

(150,0.019962563512905682)

(180,0.01110240886325257)

(210,0.01259738444250231)

(240,0.01357435960663116)

(270,0.010119881917660544)



Clustering	in	Action
Finally,	with	confidence,	we	can	cluster	the	full	normalized	data	set	with
k=180.	Again,	we	can	print	the	labels	for	each	cluster	to	get	some	sense	of	the
resulting	clustering.	Clusters	do	seem	to	be	dominated	by	one	type	of	attack
each,	and	contain	only	a	few	types.

val	pipelineModel	=	fitPipeline4(data,	180)	

val	countByClusterLabel	=	pipelineModel.transform(data).

		select("cluster",	"label").

		groupBy("cluster",	"label").count().

		orderBy("cluster",	"label")

countByClusterLabel.show()

...

+-------+----------+------+

|cluster|					label|	count|

+-------+----------+------+

|						0|					back.|			324|

|						0|			normal.|	42921|

|						1|		neptune.|		1039|

|						1|portsweep.|					9|

|						1|				satan.|					2|

|						2|		neptune.|365375|

|						2|portsweep.|			141|

|						3|portsweep.|					2|

|						3|				satan.|	10627|

|						4|		neptune.|		1033|

|						4|portsweep.|					6|

|						4|				satan.|					1|

...

See	accompanying	source	code	for	fitPipeline4()	definition

Now	we	can	make	an	actual	anomaly	detector.	Anomaly	detection	amounts	to
measuring	a	new	data	point’s	distance	to	its	nearest	centroid.	If	this	distance
exceeds	some	threshold,	it	is	anomalous.	This	threshold	might	be	chosen	to	be
the	distance	of,	say,	the	100th-farthest	data	point	from	among	known	data:

import	org.apache.spark.ml.linalg.{Vector,	Vectors}

val	kMeansModel	=	pipelineModel.stages.last.asInstanceOf[KMeansModel]

val	centroids	=	kMeansModel.clusterCenters

val	clustered	=	pipelineModel.transform(data)

val	threshold	=	clustered.

		select("cluster",	"scaledFeatureVector").as[(Int,	Vector)].

		map	{	case	(cluster,	vec)	=>	Vectors.sqdist(centroids(cluster),	vec)	}.



		orderBy($"value".desc).take(100).last	

Single	output	implicitly	named	“value”
The	final	step	is	to	apply	this	threshold	to	all	new	data	points	as	they	arrive.
For	example,	Spark	Streaming	can	be	used	to	apply	this	function	to	small
batches	of	input	data	arriving	from	sources	like	Flume,	Kafka,	or	files	on
HDFS.	Data	points	exceeding	the	threshold	might	trigger	an	alert	that	sends	an
email	or	updates	a	database.

As	an	example,	we	will	apply	it	to	the	original	data	set,	to	see	some	of	the	data
points	that	are,	we	might	believe,	most	anomalous	within	the	input.

val	originalCols	=	data.columns

val	anomalies	=	clustered.filter	{	row	=>

		val	cluster	=	row.getAs[Int]("cluster")

		val	vec	=	row.getAs[Vector]("scaledFeatureVector")

		Vectors.sqdist(centroids(cluster),	vec)	>=	threshold

}.select(originalCols.head,	originalCols.tail:_*)	

anomalies.first()	

...

[9,tcp,telnet,SF,307,2374,0,0,1,0,0,1,0,1,0,1,3,1,0,0,0,0,1,1,

	0.0,0.0,0.0,0.0,1.0,0.0,0.0,69,4,0.03,0.04,0.01,0.75,0.0,0.0,

	0.0,0.0,normal.]

Note	odd	(String,	String*)	signature	for	selecting	columns

show()	works;	hard	to	read

This	example	shows	a	slightly	different	way	of	operating	on	data	frames.	Pure
SQL	can’t	express	the	computation	of	squared	distance.	A	UDF	could	be	used,
as	before,	to	define	a	function	of	two	columns	that	returns	a	squared	distance.
However,	it’s	also	possible	to	interact	with	rows	of	data	programmatically	as	a
Row	object,	much	like	in	JDBC.

A	network	security	expert	would	be	more	able	to	interpret	why	this	is	or	is	not
actually	a	strange	connection.	It	appears	unusual	at	least	because	it	is	labeled
normal,	but	involves	connections	to	69	different	hosts.



Where	to	Go	from	Here
The	KMeansModel	is,	by	itself,	the	essence	of	an	anomaly	detection	system.	The
preceding	code	demonstrated	how	to	apply	it	to	data	to	detect	anomalies.	This
same	code	could	be	used	within	Spark	Streaming	to	score	new	data	as	it	arrives
in	near	real	time,	and	perhaps	trigger	an	alert	or	review.

MLlib	also	includes	a	variation	called	StreamingKMeans,	which	can	update	a
clustering	incrementally	as	new	data	arrives	in	a	StreamingKMeansModel.	We
could	use	this	to	continue	to	learn,	approximately,	how	new	data	affects	the
clustering,	and	not	just	to	assess	new	data	against	existing	clusters.	It	can	be
integrated	with	Spark	Streaming	as	well.	However,	it	has	not	been	updated	for
the	new	DataFrame-based	APIs.

This	model	is	only	a	simplistic	one.	For	example,	Euclidean	distance	is	used	in
this	example	because	it	is	the	only	distance	function	supported	by	Spark	MLlib
at	this	time.	In	the	future,	it	may	be	possible	to	use	distance	functions	that	can
better	account	for	the	distributions	of	and	correlations	between	features,	such
as	the	Mahalanobis	distance.

There	are	also	more	sophisticated	cluster-quality	evaluation	metrics	that	could
be	applied	(even	without	labels)	to	pick	k,	such	as	the	Silhouette	coefficient.
These	tend	to	evaluate	not	just	closeness	of	points	within	one	cluster,	but
closeness	of	points	to	other	clusters.	Finally,	different	models	could	be	applied
instead	of	simple	K-means	clustering;	for	example,	a	Gaussian	mixture	model
or	DBSCAN	could	capture	more	subtle	relationships	between	data	points	and
the	cluster	centers.	Spark	MLlib	already	implements	Gaussian	mixture	models;
implementations	of	others	may	become	available	in	Spark	MLlib	or	other
Spark-based	libraries	in	the	future.

Of	course,	clustering	isn’t	just	for	anomaly	detection.	In	fact,	it’s	more	often
associated	with	use	cases	where	the	actual	clusters	matter!	For	example,
clustering	can	also	be	used	to	group	customers	according	to	their	behaviors,
preferences,	and	attributes.	Each	cluster,	by	itself,	might	represent	a	usefully
distinguishable	type	of	customer.	This	is	a	more	data-driven	way	to	segment
customers	rather	than	leaning	on	arbitrary,	generic	divisions	like	“age	20–34”
and	“female.”

https://spark.apache.org/streaming/
http://bit.ly/2qYLZbx
http://bit.ly/2qYQlzf
http://bit.ly/2qYQkLH
https://bit.ly/1GzKhLJ
https://bit.ly/1GzKCOG
http://bit.ly/2qYwxMu


Chapter	6.	Understanding	Wikipedia
with	Latent	Semantic	Analysis
Sandy	Ryza

Where	are	the	Snowdens	of	yesteryear?
Capt.	Yossarian

Most	of	the	work	in	data	engineering	consists	of	assembling	data	into	some
sort	of	queryable	format.	We	can	query	structured	data	with	formal	languages.
For	example,	when	this	structured	data	is	tabular,	we	can	use	SQL.	While	it	is
by	no	means	an	easy	task	in	practice,	at	a	high	level,	the	work	of	making
tabular	data	accessible	is	often	straightforward	—	pull	data	from	a	variety	of
data	sources	into	a	single	table,	perhaps	cleansing	or	fusing	intelligently	along
the	way.	Unstructured	text	data	presents	a	whole	different	set	of	challenges.	The
process	of	preparing	data	into	a	format	that	humans	can	interact	with	is	not	so
much	“assembly,”	but	rather	“indexing”	in	the	nice	case	or	“coercion”	when
things	get	ugly.	A	standard	search	index	permits	fast	queries	for	the	set	of
documents	that	contains	a	given	set	of	terms.	Sometimes,	however,	we	want	to
find	documents	that	relate	to	the	concepts	surrounding	a	particular	word	even
if	the	documents	do	not	contain	that	exact	string.	Standard	search	indexes	often
fail	to	capture	the	latent	structure	in	the	text’s	subject	matter.

Latent	semantic	analysis	(LSA)	is	a	technique	in	natural	language	processing
and	information	retrieval	that	seeks	to	better	understand	a	corpus	of	documents
and	the	relationships	between	the	words	in	those	documents.	It	attempts	to
distill	the	corpus	into	a	set	of	relevant	concepts.	Each	concept	captures	a	thread
of	variation	in	the	data	and	often	corresponds	to	a	topic	that	the	corpus
discusses.	Without	yet	delving	into	the	mathematics,	each	concept	consists	of
three	attributes:	a	level	of	affinity	for	each	document	in	the	corpus,	a	level	of
affinity	for	each	term	in	the	corpus,	and	an	importance	score	reflecting	how
useful	the	concept	is	in	describing	variance	in	the	data	set.	For	example,	LSA
might	discover	a	concept	with	high	affinity	for	the	terms	“Asimov”	and
“robot,”	and	high	affinity	for	the	documents	“foundation	series”	and	“science
fiction.”	By	selecting	only	the	most	important	concepts,	LSA	can	throw	away



some	irrelevant	noise	and	merge	co-occurring	strands	to	come	up	with	a
simpler	representation	of	the	data.

We	can	employ	this	concise	representation	in	a	variety	of	tasks.	It	can	provide
scores	of	similarity	between	terms	and	other	terms,	between	documents	and
other	documents,	and	between	terms	and	documents.	By	encapsulating	the
patterns	of	variance	in	the	corpus,	it	can	base	scores	on	a	deeper	understanding
than	simply	on	counting	occurrences	and	co-occurrences	of	words.	These
similarity	measures	are	ideal	for	tasks	such	as	finding	the	set	of	documents
relevant	to	query	terms,	grouping	documents	into	topics,	and	finding	related
words.

LSA	discovers	this	lower-dimensional	representation	using	a	linear	algebra
technique	called	SVD.	SVD	can	be	thought	of	as	a	more	powerful	version	of
the	ALS	factorization	described	in	Chapter	3.	It	starts	with	a	document-term
matrix	generated	through	counting	word	frequencies	for	each	document.	In	this
matrix,	each	document	corresponds	to	a	column,	each	term	corresponds	to	a
row,	and	each	element	represents	the	importance	of	a	word	to	a	document.
SVD	then	factorizes	this	matrix	into	three	matrices,	one	of	which	expresses
concepts	in	regard	to	documents,	one	of	which	expresses	concepts	in	regard	to
terms,	and	one	of	which	contains	the	importance	for	each	concept.	The
structure	of	these	matrices	can	achieve	a	low-rank	approximation	of	the
original	matrix	by	removing	a	set	of	rows	and	columns	corresponding	to	the
least	important	concepts.	That	is,	the	matrices	in	this	low-rank	approximation
can	be	multiplied	to	produce	a	matrix	close	to	the	original,	with	increasing
loss	of	fidelity	as	each	concept	is	removed.

In	this	chapter,	we’ll	embark	upon	the	modest	task	of	enabling	queries	against
the	full	extent	of	human	knowledge	based	on	its	latent	semantic	relationships.
More	specifically,	we’ll	apply	LSA	to	a	corpus	consisting	of	the	full	set	of
articles	contained	in	Wikipedia,	which	is	about	46	GB	of	raw	text.	We’ll	cover
how	to	use	Spark	for	preprocessing	the	data:	reading	it,	cleansing	it,	and
coercing	it	into	a	numerical	form.	We’ll	show	how	to	compute	the	SVD	and
explain	how	to	interpret	and	make	use	of	it.

SVD	has	wide	applications	outside	LSA.	It	appears	in	such	diverse	places	as
detecting	climatological	trends	(Michael	Mann’s	famous	“hockey-stick”
graph),	face	recognition,	and	image	compression.	Spark’s	implementation	can

http://bit.ly/2qcHozy


perform	the	matrix	factorization	on	enormous	data	sets,	which	opens	up	the
technique	to	a	whole	new	set	of	applications.



The	Document-Term	Matrix
Before	performing	any	analysis,	LSA	requires	transforming	the	raw	text	of	the
corpus	into	a	document-term	matrix.	In	this	matrix,	each	column	represents	a
term	that	occurs	in	the	corpus,	and	each	row	represents	a	document.	Loosely,
the	value	at	each	position	should	correspond	to	the	importance	of	the	column’s
term	to	the	row’s	document.	A	few	weighting	schemes	have	been	proposed,	but
by	far	the	most	common	is	term	frequency	times	inverse	document	frequency,
or	TF-IDF.	Here’s	a	representation	in	Scala	code	of	the	formula.	We	won’t
actually	end	up	using	this	code	because	Spark	provides	its	own
implementation.

def	termDocWeight(termFrequencyInDoc:	Int,	totalTermsInDoc:	Int,

				termFreqInCorpus:	Int,	totalDocs:	Int):	Double	=	{

		val	tf	=	termFrequencyInDoc.toDouble	/	totalTermsInDoc

		val	docFreq	=	totalDocs.toDouble	/	termFreqInCorpus

		val	idf	=	math.log(docFreq)

		tf	*	idf

}

TF-IDF	captures	two	intuitions	about	the	relevance	of	a	term	to	a	document.
First,	we	would	expect	that	the	more	often	a	term	occurs	in	a	document,	the
more	important	it	is	to	that	document.	Second,	not	all	terms	are	equal	in	a
global	sense.	It	is	more	meaningful	to	encounter	a	word	that	occurs	rarely	in
the	entire	corpus	than	a	word	that	appears	in	most	of	the	documents,	thus	the
metric	uses	the	inverse	of	the	word’s	appearance	in	documents	in	the	full
corpus.

The	frequency	of	words	in	a	corpus	tends	to	be	distributed	exponentially.	A
common	word	will	often	appear	ten	times	as	often	as	a	mildly	common	word,
which	in	turn	might	appear	ten	or	a	hundred	times	as	often	as	a	rare	word.
Basing	a	metric	on	the	raw	inverse	document	frequency	would	give	rare	words
enormous	weight	and	practically	ignore	the	impact	of	all	other	words.	To
capture	this	distribution,	the	scheme	uses	the	log	of	the	inverse	document
frequency.	This	mellows	the	differences	in	document	frequencies	by
transforming	the	multiplicative	gaps	between	them	into	additive	gaps.

The	model	relies	on	a	few	assumptions.	It	treats	each	document	as	a	“bag	of
words,”	meaning	that	it	pays	no	attention	to	the	ordering	of	words,	sentence



structure,	or	negations.	By	representing	each	term	once,	the	model	has
difficulty	dealing	with	polysemy,	the	use	of	the	same	word	for	multiple
meanings.	For	example,	the	model	can’t	distinguish	between	the	use	of	“band”
in	“Radiohead	is	the	best	band	ever”	and	“I	broke	a	rubber	band.”	If	both
sentences	appear	often	in	the	corpus,	it	may	come	to	associate	“Radiohead”
with	“rubber.”

The	corpus	has	10	million	documents.	Counting	obscure	technical	jargon,	the
English	language	contains	about	a	million	terms,	some	subset	in	the	tens	of
thousands	of	which	is	likely	useful	for	understanding	the	corpus.	Because	the
corpus	contains	far	more	documents	than	terms,	it	makes	the	most	sense	to
generate	the	document-term	matrix	as	a	row	matrix	—	a	collection	of	sparse
vectors	—	each	corresponding	to	a	document.

Getting	from	the	raw	Wikipedia	dump	into	this	form	requires	a	set	of
preprocessing	steps.	First,	the	input	consists	of	a	single	enormous	XML	file
with	documents	delimited	by	<page>	tags.	This	needs	to	be	broken	up	to	feed	to
the	next	step,	turning	Wiki-formatting	into	plain	text.	The	plain	text	is	then	split
into	tokens,	which	are	reduced	from	their	different	inflectional	forms	to	a	root
term	through	a	process	called	lemmatization.	These	tokens	can	then	be	used	to
compute	term	and	document	frequencies.	A	final	step	ties	these	frequencies
together	and	builds	the	actual	vector	objects.	In	the	book	repo,	all	the	code	for
performing	these	steps	is	encapsulated	in	the	AssembleDocumentTermMatrix
class.

The	first	steps	can	be	performed	for	each	document	fully	in	parallel	(which,	in
Spark,	means	as	a	set	of	map	functions),	but	computing	the	inverse	document
frequencies	requires	aggregation	across	all	the	documents.	A	number	of	useful
general	NLP	and	Wikipedia-specific	extraction	tools	exist	that	can	aid	in	these
tasks.



Getting	the	Data
Wikipedia	makes	dumps	of	all	its	articles	available.	The	full	dump	comes	in	a
single	large	XML	file.	These	can	be	downloaded	and	then	placed	on	HDFS.	For
example:

$	curl	-s	-L	https://dumps.wikimedia.org/enwiki/latest/\

$	enwiki-latest-pages-articles-multistream.xml.bz2	\

$			|	bzip2	-cd	\

$			|	hadoop	fs	-put	-	wikidump.xml

This	will	take	a	little	while.

Chugging	through	this	volume	of	data	makes	the	most	sense	with	a	cluster	of	a
few	nodes	to	work	with.	To	run	this	chapter ’s	code	on	a	local	machine,	a	better
option	is	to	generate	a	smaller	dump	using	Wikipedia’s	exports	page.	Try
getting	all	the	pages	from	a	category	that	has	many	pages	and	few
subcategories,	such	as	Megafauna	or	Geometry.	For	the	following	code	to
work,	download	the	dump	into	the	ch06-lsa/	directory	and	rename	it	to
wikidump.xml.

https://dumps.wikimedia.org/enwiki
https://en.wikipedia.org/wiki/Special:Export


Parsing	and	Preparing	the	Data
Here’s	a	snippet	at	the	beginning	of	the	dump:

		<page>

				<title>Anarchism</title>

				<ns>0</ns>

				<id>12</id>

				<revision>

						<id>584215651</id>

						<parentid>584213644</parentid>

						<timestamp>2013-12-02T15:14:01Z</timestamp>

						<contributor>

								<username>AnomieBOT</username>

								<id>7611264</id>

						</contributor>

						<comment>Rescuing	orphaned	refs	(&quot;autogenerated1&quot;	from	rev

						584155010;	&quot;bbc&quot;	from	rev	584155010)</comment>

						<text	xml:space="preserve">{{Redirect|Anarchist|the	fictional	character|

						Anarchist	(comics)}}

{{Redirect|Anarchists}}

{{pp-move-indef}}

{{Anarchism	sidebar}}

'''Anarchism'''	is	a	[[political	philosophy]]	that	advocates	[[stateless	society|

stateless	societies]]	often	defined	as	[[self-governance|self-governed]]

voluntary	institutions,&lt;ref&gt;&quot;ANARCHISM,	a	social	philosophy	that

rejects	authoritarian	government	and	maintains	that	voluntary	institutions	are

best	suited	to	express	man's	natural	social	tendencies.&quot;	George	Woodcock.

&quot;Anarchism&quot;	at	The	Encyclopedia	of	Philosophy&lt;/ref&gt;&lt;ref&gt;

&quot;In	a	society	developed	on	these	lines,	the	voluntary	associations	which

already	now	begin	to	cover	all	the	fields	of	human	activity	would	take	a	still

greater	extension	so	as	to	substitute

...

Let’s	fire	up	the	Spark	shell.	In	this	chapter,	we	rely	on	several	libraries	to
make	our	lives	easier.	The	GitHub	repo	contains	a	Maven	project	that	can	be
used	to	build	a	JAR	file	that	packages	all	these	dependencies	together:

$	cd	ch06-lsa/

$	mvn	package

$	spark-shell	--jars	target/ch06-lsa-2.0.0-jar-with-dependencies.jar

To	start	operating	on	this	dump,	we’ll	need	to	strip	out	the	formatting	and	get
to	the	content.	A	good	start	would	be	to	produce	a	data	set	of	(title,	document
content)	tuples	that	we	can	then	run	further	processing	on.	The	Cloud9	project
provides	a	set	of	APIs	that	are	really	helpful	for	this.

Cloud9	provides	a	class,	XMLInputFormat,	derived	from	the	Apache	Mahout



project,	that	can	split	up	the	enormous	Wikipedia	dump	into	documents.	To
create	a	data	set	with	it:

import	edu.umd.cloud9.collection.XMLInputFormat

import	org.apache.hadoop.conf.Configuration

import	org.apache.hadoop.io._

val	path	=	"wikidump.xml"

@transient	val	conf	=	new	Configuration()

conf.set(XMLInputFormat.START_TAG_KEY,	"<page>")

conf.set(XMLInputFormat.END_TAG_KEY,	"</page>")

val	kvs	=	spark.sparkContext.newAPIHadoopFile(path,	classOf[XMLInputFormat],

		classOf[LongWritable],	classOf[Text],	conf)

val	rawXmls	=	kvs.map(_._2.toString).toDS()

Turning	the	Wiki	XML	into	the	plain	text	of	article	contents	could	require	a
chapter	of	its	own,	but	luckily	the	Cloud9	project	provides	APIs	that	handle	this
entirely:

import	edu.umd.cloud9.collection.wikipedia.language._

import	edu.umd.cloud9.collection.wikipedia._

def	wikiXmlToPlainText(pageXml:	String):	Option[(String,	String)]	=	{

		//	Wikipedia	has	updated	their	dumps	slightly	since	Cloud9	was	written,

		//	so	this	hacky	replacement	is	sometimes	required	to	get	parsing	to	work.

		val	hackedPageXml	=	pageXml.replaceFirst(

				"<text	xml:space=\"preserve\"	bytes=\"\\d+\">",

				"<text	xml:space=\"preserve\">")

		val	page	=	new	EnglishWikipediaPage()

		WikipediaPage.readPage(page,	hackedPageXml)

		if	(page.isEmpty)	None

		else	Some((page.getTitle,	page.getContent))

}

val	docTexts	=	rawXmls.filter(_	!=	null).flatMap(wikiXmlToPlainText)



Lemmatization
With	the	plain	text	in	hand,	next	we	need	to	turn	it	into	a	bag	of	terms.	This	step
requires	care	for	a	couple	of	reasons.	First,	common	words	like	“the”	and	“is”
take	up	space	but	at	best	offer	no	useful	information	to	the	model.	Filtering	out
a	list	of	stop	words	can	both	save	space	and	improve	fidelity.	Second,	terms
with	the	same	meaning	can	often	take	slightly	different	forms.	For	example,
“monkey”	and	“monkeys”	do	not	deserve	to	be	separate	terms.	Nor	do
“nationalize”	and	“nationalization.”	Combining	these	different	inflectional
forms	into	single	terms	is	called	stemming	or	lemmatization.	Stemming	refers
to	heuristics-based	techniques	for	chopping	off	characters	at	the	ends	of	words,
while	lemmatization	refers	to	more	principled	approaches.	For	example,	the
former	might	truncate	“drew”	to	“dr,”	while	the	latter	might	more	correctly
output	“draw.”	The	Stanford	Core	NLP	project	provides	an	excellent
lemmatizer	with	a	Java	API	that	Scala	can	take	advantage	of.

The	following	snippet	takes	the	data	set	of	plain-text	documents	and	both
lemmatizes	it	and	filters	out	stop	words.	Note	that	this	code	relies	on	a	file	of
stopwords	called	stopwords.txt,	which	is	available	in	the	accompanying	source
code	repo	and	should	be	downloaded	into	the	current	working	directory	first:

import	scala.collection.JavaConverters._

import	scala.collection.mutable.ArrayBuffer

import	edu.stanford.nlp.pipeline._

import	edu.stanford.nlp.ling.CoreAnnotations._

import	java.util.Properties

import	org.apache.spark.sql.Dataset

def	createNLPPipeline():	StanfordCoreNLP	=	{

		val	props	=	new	Properties()

		props.put("annotators",	"tokenize,	ssplit,	pos,	lemma")

		new	StanfordCoreNLP(props)

}

def	isOnlyLetters(str:	String):	Boolean	=	{

		str.forall(c	=>	Character.isLetter(c))

}

def	plainTextToLemmas(text:	String,	stopWords:	Set[String],

				pipeline:	StanfordCoreNLP):	Seq[String]	=	{

		val	doc	=	new	Annotation(text)

		pipeline.annotate(doc)

		val	lemmas	=	new	ArrayBuffer[String]()

		val	sentences	=	doc.get(classOf[SentencesAnnotation])

		for	(sentence	<-	sentences.asScala;

http://bit.ly/2psi9Ms


							token	<-	sentence.get(classOf[TokensAnnotation]).asScala)	{

				val	lemma	=	token.get(classOf[LemmaAnnotation])

				if	(lemma.length	>	2	&&	!stopWords.contains(lemma)

								&&	isOnlyLetters(lemma))	{	

						lemmas	+=	lemma.toLowerCase

				}

		}

		lemmas

}

val	stopWords	=	scala.io.Source.fromFile("stopwords.txt").getLines().toSet

val	bStopWords	=	spark.sparkContext.broadcast(stopWords)	

val	terms:	Dataset[(String,	Seq[String])]	=

		docTexts.mapPartitions	{	iter	=>

				val	pipeline	=	createNLPPipeline()

				iter.map	{	case(title,	contents)	=>

						(title,	plainTextToLemmas(contents,	bStopWords.value,	pipeline))

				}

		}	

Specify	some	minimal	requirements	on	lemmas	to	weed	out	garbage.

Broadcast	the	stop	words	to	save	on	memory	in	the	executors.

Use	mapPartitions	so	that	we	only	initialize	the	NLP	pipeline	object	once
per	partition	instead	of	once	per	document.



Computing	the	TF-IDFs
At	this	point,	terms	refers	to	a	data	set	of	sequences	of	terms,	each
corresponding	to	a	document.	The	next	step	is	to	compute	the	frequencies	for
each	term	within	each	document	and	for	each	term	within	the	entire	corpus.
The	spark.ml	package	contains	Estimator	and	Transformer	implementations
for	doing	exactly	this.

To	take	advantage	of	them,	first	we’ll	need	to	convert	our	data	set	into	a	data
frame:

val	termsDF	=	terms.toDF("title",	"terms")

Let’s	filter	out	all	documents	that	have	zero	or	one	term:

val	filtered	=	termsDF.where(size($"terms")	>	1)

The	CountVectorizer	is	an	Estimator	that	can	help	compute	the	term
frequencies	for	us.	The	CountVectorizer	scans	the	data	to	build	up	a
vocabulary,	a	mapping	of	integers	to	terms,	encapsulated	in	the
CountVectorizerModel,	a	Transformer.	The	CountVectorizerModel	can	then	be
used	to	generate	a	term	frequency	Vector	for	each	document.	The	vector	has	a
component	for	each	term	in	the	vocabulary,	and	the	value	for	each	component
is	the	number	of	times	the	term	appears	in	the	document.	Spark	uses	sparse
vectors	here,	because	documents	typically	only	contain	a	small	subset	of	the
full	vocabulary.

import	org.apache.spark.ml.feature.CountVectorizer

val	numTerms	=	20000

val	countVectorizer	=	new	CountVectorizer().

		setInputCol("terms").setOutputCol("termFreqs").

		setVocabSize(numTerms)

val	vocabModel	=	countVectorizer.fit(filtered)

val	docTermFreqs	=	vocabModel.transform(filtered)

Notice	the	use	of	setVocabSize.	The	corpus	contains	millions	of	terms,	but
many	are	highly	specialized	words	that	only	appear	in	one	or	two	documents.
Filtering	out	less	frequent	terms	can	both	improve	performance	and	remove



noise.	When	we	set	a	vocabulary	size	on	the	estimator,	it	leaves	out	all	but	the
most	frequent	words.

The	resulting	DataFrame	will	be	used	at	least	twice	after	this	point:	to	calculate
the	inverse	document	frequencies	and	the	final	document-term	matrix.	So
caching	it	in	memory	is	a	good	idea:

docTermFreqs.cache()

With	the	document	frequencies	in	hand,	we	can	compute	the	inverse	document
frequencies.	For	this,	we	use	IDF,	another	Estimator,	which	counts	the	number
of	documents	in	which	each	term	in	the	corpus	appears	and	then	uses	these
counts	to	compute	the	IDF	scaling	factor	for	each	term.	The	IDFModel	that	it
yields	can	then	apply	these	scaling	factors	to	each	term	in	each	vector	in	the
data	set.

import	org.apache.spark.ml.feature.IDF

val	idf	=	new	IDF().setInputCol("termFreqs").setOutputCol("tfidfVec")

val	idfModel	=	idf.fit(docTermFreqs)

val	docTermMatrix	=	idfModel.transform(docTermFreqs).select("title",	"tfidfVec")

As	we	descend	from	data	frames	into	the	world	of	vectors	and	matrices,	we
lose	the	ability	to	key	by	strings.	Thus,	if	we	want	to	trace	what	we	learn	back
to	recognizable	entities,	it’s	important	for	us	to	save	a	mapping	of	positions	in
the	matrix	to	the	terms	and	document	titles	in	our	original	corpus.	Positions	in
the	term	vectors	are	equivalent	to	columns	in	our	document-term	matrix.	The
mapping	of	these	positions	to	term	strings	is	already	saved	in	our
CountVectorizerModel.	We	can	access	it	with:

val	termIds:	Array[String]	=	vocabModel.vocabulary

Creating	a	mapping	of	row	IDs	to	document	titles	is	a	little	more	difficult.	To
achieve	it,	we	can	use	the	zipWithUniqueId	function,	which	associates	a	unique
deterministic	ID	with	every	row	in	the	DataFrame.	We	rely	on	the	fact	that,	if
we	call	this	function	on	a	transformed	version	of	the	DataFrame,	it	will	assign
the	same	unique	IDs	to	the	transformed	rows	as	long	as	the	transformations
don’t	change	the	number	of	rows	or	their	partitioning.	Thus,	we	can	trace	the
rows	back	to	their	IDs	in	the	DataFrame	and,	consequently,	the	document	titles



that	they	correspond	to:

val	docIds	=	docTermFreqs.rdd.map(_.getString(0)).

		zipWithUniqueId().

		map(_.swap).

		collect().toMap



Singular	Value	Decomposition
With	the	document-term	matrix	M	in	hand,	the	analysis	can	proceed	to	the
factorization	and	dimensionality	reduction.	MLlib	contains	an	implementation
of	the	SVD	that	can	handle	enormous	matrices.	The	singular	value
decomposition	takes	an	m	×	n	matrix	and	returns	three	matrices	that
approximately	equal	it	when	multiplied	together:

M	≈	U	S	VT

The	matrices	are:
U	is	an	m	×	k	matrix	whose	columns	form	an	orthonormal	basis	for	the
document	space.

S	is	a	k	×	k	diagonal	matrix,	each	of	whose	entries	correspond	to	the
strength	of	one	of	the	concepts.

VT	is	a	k	×	n	matrix	whose	columns	form	an	orthonormal	basis	for	the
term	space.

In	the	LSA	case,	m	is	the	number	of	documents	and	n	is	the	number	of	terms.
The	decomposition	is	parameterized	with	a	number	k,	less	than	or	equal	to	n,
which	indicates	how	many	concepts	to	keep	around.	When	k=n,	the	product	of
the	factor	matrices	reconstitutes	the	original	matrix	exactly.	When	k<n,	the
multiplication	results	in	a	low-rank	approximation	of	the	original	matrix.	k	is
typically	chosen	to	be	much	smaller	than	n.	SVD	ensures	that	the
approximation	will	be	the	closest	possible	to	the	original	matrix	(as	defined	by
the	L2	Norm	—	that	is,	the	sum	of	squares	—	of	the	difference),	given	the
constraint	that	it	needs	to	be	expressible	in	only	k	concepts.

At	the	time	of	this	writing,	the	spark.ml	package,	which	operates	on
DataFrames,	does	not	include	an	implementation	of	SVD.	However,	the	older
spark.mllib,	which	operates	on	RDDs,	does.	This	means	that	to	compute	the
SVD	of	our	document-term	matrix,	we	need	to	represent	it	as	an	RDD	of
vectors.	On	top	of	this,	the	spark.ml	and	spark.mllib	packages	each	have	their
own	Vector	class.	The	spark.ml	Transformers	we	used	earlier	yield	spark.ml
vectors	but	the	SVD	implementation	only	accepts	spark.mllib	vectors,	so	we



need	to	perform	a	conversion.	This	is	not	the	most	elegant	piece	of	code,	but	it
gets	the	job	done:

import	org.apache.spark.mllib.linalg.{Vectors,

		Vector	=>	MLLibVector}

import	org.apache.spark.ml.linalg.{Vector	=>	MLVector}

val	vecRdd	=	docTermMatrix.select("tfidfVec").rdd.map	{	row	=>

		Vectors.fromML(row.getAs[MLVector]("tfidfVec"))

}

To	find	the	singular	value	decomposition,	we	simply	wrap	an	RDD	of	row
vectors	in	a	RowMatrix	and	call	computeSVD:

import	org.apache.spark.mllib.linalg.distributed.RowMatrix

vecRdd.cache()

val	mat	=	new	RowMatrix(vecRdd)

val	k	=	1000

val	svd	=	mat.computeSVD(k,	computeU=true)

The	RDD	should	be	cached	in	memory	beforehand	because	the	computation
requires	multiple	passes	over	the	data.	The	computation	requires	O(nk)	storage
on	the	driver,	O(n)	storage	for	each	task,	and	O(k)	passes	over	the	data.

As	a	reminder,	a	vector	in	term	space	means	a	vector	with	a	weight	on	every
term,	a	vector	in	document	space	means	a	vector	with	a	weight	on	every
document,	and	a	vector	in	concept	space	means	a	vector	with	a	weight	on	every
concept.	Each	term,	document,	or	concept	defines	an	axis	in	its	respective
space,	and	the	weight	ascribed	to	the	term,	document,	or	concept	means	a
length	along	that	axis.	Every	term	or	document	vector	can	be	mapped	to	a
corresponding	vector	in	concept	space.	Every	concept	vector	has	possibly
many	term	and	document	vectors	that	map	to	it,	including	a	canonical	term	and
document	vector	that	it	maps	to	when	transformed	in	the	reverse	direction.

V	is	an	n	×	k	matrix	in	which	each	row	corresponds	to	a	term	and	each	column
corresponds	to	a	concept.	It	defines	a	mapping	between	term	space	(the	space
where	each	point	is	an	n-dimensional	vector	holding	a	weight	for	each	term)
and	concept	space	(the	space	where	each	point	is	a	k-dimensional	vector
holding	a	weight	for	each	concept).

Similarly,	U	is	an	m	×	k	matrix	where	each	row	corresponds	to	a	document	and
each	column	corresponds	to	a	concept.	It	defines	a	mapping	between	document



space	and	concept	space.

S	is	a	k	×	k	diagonal	matrix	that	holds	the	singular	values.	Each	diagonal
element	in	S	corresponds	to	a	single	concept	(and	thus	a	column	in	V	and	a
column	in	U).	The	magnitude	of	each	of	these	singular	values	corresponds	to
the	importance	of	that	concept:	its	power	in	explaining	the	variance	in	the	data.
An	(inefficient)	implementation	of	SVD	could	find	the	rank-k	decomposition
by	starting	with	the	rank-n	decomposition	and	throwing	away	the	n–k	smallest
singular	values	until	there	are	k	left	(along	with	their	corresponding	columns
in	U	and	V).	A	key	insight	of	LSA	is	that	only	a	small	number	of	concepts	is
important	to	represent	that	data.	The	entries	in	the	S	matrix	directly	indicate	the
importance	of	each	concept.	They	also	happen	to	be	the	square	roots	of	the
eigenvalues	of	MMT.

http://bit.ly/2qcP6d3


Finding	Important	Concepts
So	SVD	outputs	a	bunch	of	numbers.	How	can	we	inspect	these	to	verify	they
actually	relate	to	anything	useful?	The	V	matrix	represents	concepts	through
the	terms	that	are	important	to	them.	As	discussed	earlier,	V	contains	a	column
for	every	concept	and	a	row	for	every	term.	The	value	at	each	position	can	be
interpreted	as	the	relevance	of	that	term	to	that	concept.	This	means	that	the
most	relevant	terms	to	each	of	the	top	concepts	can	be	found	with	something
like	this:

import	org.apache.spark.mllib.linalg.{Matrix,

		SingularValueDecomposition}

import	org.apache.spark.mllib.linalg.distributed.RowMatrix

def	topTermsInTopConcepts(

				svd:	SingularValueDecomposition[RowMatrix,	Matrix],

				numConcepts:	Int,

				numTerms:	Int,	termIds:	Array[String])

		:	Seq[Seq[(String,	Double)]]	=	{

		val	v	=	svd.V

		val	topTerms	=	new	ArrayBuffer[Seq[(String,	Double)]]()

		val	arr	=	v.toArray

		for	(i	<-	0	until	numConcepts)	{

				val	offs	=	i	*	v.numRows

				val	termWeights	=	arr.slice(offs,	offs	+	v.numRows).zipWithIndex

				val	sorted	=	termWeights.sortBy(-_._1)

				topTerms	+=	sorted.take(numTerms).map	{

						case	(score,	id)	=>	(termIds(id),	score)	

				}

		}

		topTerms

}

This	last	step	finds	the	actual	terms	that	correspond	to	the	positions	in	the
term	vectors.	Recall	that	termIds	is	the	integer->term	mapping	we	got
from	the	CountVectorizer.

Note	that	V	is	a	matrix	in	local	memory	in	the	driver	process,	and	the
computation	occurs	in	a	nondistributed	manner.	We	can	find	the	documents
relevant	to	each	of	the	top	concepts	in	a	similar	manner	using	U,	but	the	code
looks	a	little	bit	different	because	U	is	stored	as	a	distributed	matrix:

def	topDocsInTopConcepts(

				svd:	SingularValueDecomposition[RowMatrix,	Matrix],

				numConcepts:	Int,	numDocs:	Int,	docIds:	Map[Long,	String])



		:	Seq[Seq[(String,	Double)]]	=	{

		val	u		=	svd.U

		val	topDocs	=	new	ArrayBuffer[Seq[(String,	Double)]]()

		for	(i	<-	0	until	numConcepts)	{

				val	docWeights	=	u.rows.map(_.toArray(i)).zipWithUniqueId()	

				topDocs	+=	docWeights.top(numDocs).map	{

						case	(score,	id)	=>	(docIds(id),	score)

				}

		}

		topDocs

}

monotonically_increasing_id/zipWithUniqueId	trick	discussed	in	the
previous	section	of	the	chapter.	This	allows	us	to	maintain	continuity
between	rows	in	the	matrix	and	rows	in	the	DataFrame	it	is	derived	from,
which	also	has	the	titles.

Let’s	inspect	the	first	few	concepts:

val	topConceptTerms	=	topTermsInTopConcepts(svd,	4,	10,	termIds)

val	topConceptDocs	=	topDocsInTopConcepts(svd,	4,	10,	docIds)

for	((terms,	docs)	<-	topConceptTerms.zip(topConceptDocs))	{

		println("Concept	terms:	"	+	terms.map(_._1).mkString(",	"))

		println("Concept	docs:	"	+	docs.map(_._1).mkString(",	"))

		println()

}

Concept	terms:	summary,	licensing,	fur,	logo,	album,	cover,	rationale,

		gif,	use,	fair

Concept	docs:	File:Gladys-in-grammarland-cover-1897.png,

		File:Gladys-in-grammarland-cover-2010.png,	File:1942ukrpoljudeakt4.jpg,

		File:Σακελλαρίδης.jpg,	File:Baghdad-texas.jpg,	File:Realistic.jpeg,

		File:DuplicateBoy.jpg,	File:Garbo-the-spy.jpg,	File:Joysagar.jpg,

		File:RizalHighSchoollogo.jpg

Concept	terms:	disambiguation,	william,	james,	john,	iran,	australis,

		township,	charles,	robert,	river

Concept	docs:	G.	australis	(disambiguation),	F.	australis	(disambiguation),

		U.	australis	(disambiguation),	L.	maritima	(disambiguation),

		G.	maritima	(disambiguation),	F.	japonica	(disambiguation),

		P.	japonica	(disambiguation),	Velo	(disambiguation),

		Silencio	(disambiguation),	TVT	(disambiguation)

Concept	terms:	licensing,	disambiguation,	australis,	maritima,	rawal,

		upington,	tallulah,	chf,	satyanarayana,	valérie

Concept	docs:	File:Rethymno.jpg,	File:Ladycarolinelamb.jpg,

		File:KeyAirlines.jpg,	File:NavyCivValor.gif,	File:Vitushka.gif,

		File:DavidViscott.jpg,	File:Bigbrother13cast.jpg,	File:Rawal	Lake1.JPG,

		File:Upington	location.jpg,	File:CHF	SG	Viewofaltar01.JPG

Concept	terms:	licensing,	summarysource,	summaryauthor,	wikipedia,

		summarypicture,	summaryfrom,	summaryself,	rawal,	chf,	upington

Concept	docs:	File:Rethymno.jpg,	File:Wristlock4.jpg,	File:Meseanlol.jpg,

		File:Sarles.gif,	File:SuzlonWinMills.JPG,	File:Rawal	Lake1.JPG,

		File:CHF	SG	Viewofaltar01.JPG,	File:Upington	location.jpg,

		File:Driftwood-cover.jpg,	File:Tallulah	gorge2.jpg



Concept	terms:	establishment,	norway,	country,	england,	spain,	florida,

		chile,	colorado,	australia,	russia

Concept	docs:	Category:1794	establishments	in	Norway,

		Category:1838	establishments	in	Norway,

		Category:1849	establishments	in	Norway,

		Category:1908	establishments	in	Norway,

		Category:1966	establishments	in	Norway,

		Category:1926	establishments	in	Norway,

		Category:1957	establishments	in	Norway,

		Template:EstcatCountry1stMillennium,

		Category:2012	establishments	in	Chile,

		Category:1893	establishments	in	Chile

The	documents	in	the	first	concept	appear	to	all	be	image	files,	and	the	terms
appear	to	be	related	to	image	attributes	and	licensing.	The	second	concept
appears	to	be	disambiguation	pages.	It	seems	that	perhaps	this	dump	is	not
restricted	to	the	raw	Wikipedia	articles	and	is	cluttered	by	administrative	pages
as	well	as	discussion	pages.	Inspecting	the	output	of	intermediate	stages	is
useful	for	catching	this	kind	of	issue	early.	Luckily,	it	appears	that	Cloud9
provides	some	functionality	for	filtering	these	out.	An	updated	version	of	the
wikiXmlToPlainText	method	looks	like	the	following:

def	wikiXmlToPlainText(xml:	String):	Option[(String,	String)]	=	{

		...

		if	(page.isEmpty	||	!page.isArticle	||	page.isRedirect	||

						page.getTitle.contains("(disambiguation)"))	{

				None

		}	else	{

				Some((page.getTitle,	page.getContent))

		}

}

Rerunning	the	pipeline	on	the	filtered	set	of	documents	yields	a	much	more
reasonable	result:

Concept	terms:	disambiguation,	highway,	school,	airport,	high,	refer,

		number,	squadron,	list,	may,	division,	regiment,	wisconsin,	channel,

		county

Concept	docs:	Tri-State	Highway	(disambiguation),

		Ocean-to-Ocean	Highway	(disambiguation),	Highway	61	(disambiguation),

		Tri-County	Airport	(disambiguation),	Tri-Cities	Airport	(disambiguation),

		Mid-Continent	Airport	(disambiguation),	99	Squadron	(disambiguation),

		95th	Squadron	(disambiguation),	94	Squadron	(disambiguation),

		92	Squadron	(disambiguation)

Concept	terms:	disambiguation,	nihilistic,	recklessness,	sullen,	annealing,

		negativity,	initialization,	recapitulation,	streetwise,	pde,	pounce,

		revisionism,	hyperspace,	sidestep,	bandwagon

Concept	docs:	Nihilistic	(disambiguation),	Recklessness	(disambiguation),

		Manjack	(disambiguation),	Wajid	(disambiguation),	Kopitar	(disambiguation),

		Rocourt	(disambiguation),	QRG	(disambiguation),

		Maimaicheng	(disambiguation),	Varen	(disambiguation),	Gvr	(disambiguation)



Concept	terms:	department,	commune,	communes,	insee,	france,	see,	also,

		southwestern,	oise,	marne,	moselle,	manche,	eure,	aisne,	isère

Concept	docs:	Communes	in	France,	Saint-Mard,	Meurthe-et-Moselle,

		Saint-Firmin,	Meurthe-et-Moselle,	Saint-Clément,	Meurthe-et-Moselle,

		Saint-Sardos,	Lot-et-Garonne,	Saint-Urcisse,	Lot-et-Garonne,	Saint-Sernin,

		Lot-et-Garonne,	Saint-Robert,	Lot-et-Garonne,	Saint-Léon,	Lot-et-Garonne,

		Saint-Astier,	Lot-et-Garonne

Concept	terms:	genus,	species,	moth,	family,	lepidoptera,	beetle,	bulbophyllum,

		snail,	database,	natural,	find,	geometridae,	reference,	museum,	noctuidae

Concept	docs:	Chelonia	(genus),	Palea	(genus),	Argiope	(genus),	Sphingini,

		Cribrilinidae,	Tahla	(genus),	Gigartinales,	Parapodia	(genus),

		Alpina	(moth),	Arycanda	(moth)

Concept	terms:	province,	district,	municipality,	census,	rural,	iran,

		romanize,	population,	infobox,	azerbaijan,	village,	town,	central,

		settlement,	kerman

Concept	docs:	New	York	State	Senate	elections,	2012,

		New	York	State	Senate	elections,	2008,

		New	York	State	Senate	elections,	2010,

		Alabama	State	House	of	Representatives	elections,	2010,

		Albergaria-a-Velha,	Municipalities	of	Italy,	Municipality	of	Malmö,

		Delhi	Municipality,	Shanghai	Municipality,	Göteborg	Municipality

Concept	terms:	genus,	species,	district,	moth,	family,	province,	iran,	rural,

		romanize,	census,	village,	population,	lepidoptera,	beetle,	bulbophyllum

Concept	docs:	Chelonia	(genus),	Palea	(genus),	Argiope	(genus),	Sphingini,

		Tahla	(genus),	Cribrilinidae,	Gigartinales,	Alpina	(moth),	Arycanda	(moth),

		Arauco	(moth)

Concept	terms:	protein,	football,	league,	encode,	gene,	play,	team,	bear,

		season,	player,	club,	reading,	human,	footballer,	cup

Concept	docs:	Protein	FAM186B,	ARL6IP1,	HIP1R,	SGIP1,	MTMR3,

		Gem-associated	protein	6,	Gem-associated	protein	7,	C2orf30,	OS9	(gene),

		RP2	(gene)

The	first	two	concepts	remain	ambiguous,	but	the	rest	appear	to	correspond	to
meaningful	categories.	The	third	appears	to	be	composed	of	locales	in	France,
the	fourth	and	sixth	of	animal	and	bug	taxonomies.	The	fifth	concerns
elections,	municipalities,	and	government.	The	articles	in	the	seventh	concern
proteins,	while	some	of	the	terms	also	reference	football,	perhaps	with	a
crossover	of	fitness	of	performance-enhancing	drugs?	Even	though
unexpected	words	appear	in	each,	all	the	concepts	exhibit	some	thematic
coherence.



Querying	and	Scoring	with	a	Low-Dimensional
Representation
How	relevant	is	a	term	to	a	document?	How	relevant	are	two	terms	to	each
other?	Which	documents	most	closely	match	a	set	of	query	terms?	The
original	document-term	matrix	provides	a	shallow	way	to	answer	these
questions.	We	can	achieve	a	relevance	score	between	two	terms	by	computing
the	cosine	similarity	between	their	two	column	vectors	in	the	matrix.	Cosine
similarity	measures	the	angle	between	two	vectors.	Vectors	that	point	in	the
same	direction	in	the	high-dimensional	document	space	are	thought	to	be
relevant	to	each	other.	This	is	computed	as	the	dot	product	of	the	vectors
divided	by	the	product	of	their	lengths.

Cosine	similarity	sees	wide	use	as	a	similarity	metric	between	vectors	of	term
and	document	weights	in	natural	language	and	information	retrieval
applications.	Likewise,	for	two	documents,	a	relevance	score	can	be	computed
as	the	cosine	similarity	between	their	two	row	vectors.	A	relevance	score
between	a	term	and	document	can	simply	be	the	element	in	the	matrix	at	the
intersection	of	both.

However,	these	scores	come	from	shallow	knowledge	about	the	relationships
between	these	entities,	relying	on	simple	frequency	counts.	LSA	provides	the
ability	to	base	these	scores	on	a	deeper	understanding	of	the	corpus.	For
example,	if	the	term	“artillery”	appears	nowhere	in	a	document	on	the
“Normandy	landings”	article	but	it	mentions	“howitzer”	frequently,	the	LSA
representation	may	be	able	to	recover	the	relation	between	“artillery”	and	the
article	based	on	the	co-occurrence	of	“artillery”	and	“howitzer”	in	other
documents.

The	LSA	representation	also	offers	benefits	from	an	efficiency	standpoint.	It
packs	the	important	information	into	a	lower-dimensional	representation	that
can	be	operated	on	instead	of	the	original	document-term	matrix.	Consider	the
task	of	finding	the	set	of	terms	most	relevant	to	a	particular	term.	The	naive
approach	requires	computing	the	dot	product	between	that	term’s	column
vector	and	every	other	column	vector	in	the	document-term	matrix.	This
involves	a	number	of	multiplications	proportional	to	the	number	of	terms



times	the	number	of	documents.	LSA	can	achieve	the	same	by	looking	up	its
concept-space	representation	and	mapping	it	back	into	term	space,	requiring	a
number	of	multiplications	only	proportional	to	the	number	of	terms	times	k.
The	low-rank	approximation	encodes	the	relevant	patterns	in	the	data,	so	the
full	corpus	need	not	be	queried.

In	this	final	section,	we’ll	build	a	primitive	query	engine	using	the	LSA
representation	of	our	data.	In	the	book	repo,	the	code	for	this	section	is
encapsulated	in	the	LSAQueryEngine	class.



Term-Term	Relevance
LSA	understands	the	relation	between	two	terms	as	the	cosine	similarity
between	their	two	columns	in	the	reconstructed	low-rank	matrix;	that	is,	the
matrix	that	would	be	produced	if	the	three	approximate	factors	were	multiplied
back	together.	One	of	the	ideas	behind	LSA	is	that	this	matrix	offers	a	more
useful	representation	of	the	data.	It	offers	this	in	a	few	ways:

Accounting	for	synonymy	by	condensing	related	terms

Accounting	for	polysemy	by	placing	less	weight	on	terms	that	have
multiple	meanings

Throwing	out	noise

However,	we	need	not	actually	calculate	the	contents	of	this	matrix	to	discover
the	cosine	similarity.	Some	linear	algebra	manipulation	reveals	that	the	cosine
similarity	between	two	columns	in	the	reconstructed	matrix	is	exactly	equal	to
the	cosine	similarity	between	the	corresponding	columns	in	SVT.	Consider	the
task	of	finding	the	set	of	terms	most	relevant	to	a	particular	term.	Finding	the
cosine	similarity	between	a	term	and	all	other	terms	is	equivalent	to
normalizing	each	row	in	VS	to	length	1	and	then	multiplying	the	row
corresponding	to	that	term	by	it.	Each	element	in	the	resulting	vector	will
contain	a	similarity	between	a	term	and	the	query	term.

For	the	sake	of	brevity,	the	implementations	of	the	methods	that	compute	VS
and	normalize	its	rows	are	omitted,	but	they	can	be	found	in	the	repository.	We
carry	them	out	in	the	LSAQueryEngine	class’s	initialization	so	that	they	can	be
reused:

import	breeze.linalg.{DenseMatrix	=>	BDenseMatrix}

class	LSAQueryEngine(

				val	svd:	SingularValueDecomposition[RowMatrix,	Matrix],

				...

		)	{

		val	VS:	BDenseMatrix[Double]	=	multiplyByDiagonalMatrix(svd.V,	svd.s)

		val	normalizedVS:	BDenseMatrix[Double]	=	rowsNormalized(VS)

		...



In	the	initializer,	we	also	compute	invert	our	id-to-document	and	id-to-term
mappings	so	that	we	can	map	query	strings	back	into	positions	in	our	matrices:

val	idTerms:	Map[String,	Int]	=	termIds.zipWithIndex.toMap

val	idDocs:	Map[String,	Long]	=	docIds.map(_.swap)

Now,	to	find	terms	relevant	to	a	term:

def	topTermsForTerm(termId:	Int):	Seq[(Double,	Int)]	=	{

		val	rowVec	=	normalizedVS(termId,	::).t	

		val	termScores	=	(normalizedVS	*	termRowVec).toArray.zipWithIndex	

		termScores.sortBy(-_._1).take(10)	

}

def	printTopTermsForTerm(term:	String):	Unit	=	{

		val	idWeights	=	topTermsForTerm(idTerms(term))

		println(idWeights.map	{	case	(score,	id)	=>

				(termIds(id),	score)	

		}.mkString(",	"))

}

Look	up	the	row	in	VS	corresponding	to	the	given	term	ID

Compute	scores	against	every	term

Find	the	terms	with	the	highest	scores

Compute	a	mapping	of	terms	to	term	IDs
If	you	are	following	along	in	spark-shell,	this	functionality	can	be	loaded
using:

import	com.cloudera.datascience.lsa.LSAQueryEngine

val	termIdfs	=	idfModel.idf.toArray

val	queryEngine	=	new	LSAQueryEngine(svd,	termIds,	docIds,	termIdfs)

Here	are	the	highest-scored	terms	for	a	few	example	terms:

queryEngine.printTopTermsForTerm("algorithm")

(algorithm,1.000000000000002),	(heuristic,0.8773199836391916),



(compute,0.8561015487853708),	(constraint,0.8370707630657652),

(optimization,0.8331940333186296),	(complexity,0.823738607119692),

(algorithmic,0.8227315888559854),	(iterative,0.822364922633442),

(recursive,0.8176921180556759),	(minimization,0.8160188481409465)

queryEngine.printTopTermsForTerm("radiohead")

(radiohead,0.9999999999999993),	(lyrically,0.8837403315233519),

(catchy,0.8780717902060333),	(riff,0.861326571452104),

(lyricsthe,0.8460798060853993),	(lyric,0.8434937575368959),

(upbeat,0.8410212279939793),	(song,0.8280655506697948),

(musically,0.8239497926624353),	(anthemic,0.8207874883055177)

queryEngine.printTopTermsForTerm("tarantino")

(tarantino,1.0),	(soderbergh,0.780999345687437),

(buscemi,0.7386998898933894),	(screenplay,0.7347041267543623),

(spielberg,0.7342534745182226),	(dicaprio,0.7279146798149239),

(filmmaking,0.7261103750076819),	(lumet,0.7259812377657624),

(directorial,0.7195131565316943),	(biopic,0.7164037755577743)



Document-Document	Relevance
The	same	goes	for	computing	relevance	scores	between	documents.	To	find
the	similarity	between	two	documents,	compute	the	cosine	similarity	between
u1T	S	and	u2T	S,	where	ui	is	the	row	in	U	corresponding	to	document	i.	To	find
the	similarity	between	a	document	and	all	other	documents,	compute
normalized(US)	ut.

Similar	to	normalized(VS),	we	compute	normalized(US)	in	the	initialization	of
the	LSAQueryEngine	class	so	the	results	can	be	reused.	In	this	case,	the
implementation	is	slightly	different	because	U	is	backed	by	an	RDD,	not	a	local
matrix.

val	US:	RowMatrix	=	multiplyByDiagonalRowMatrix(svd.U,	svd.s)

val	normalizedUS:	RowMatrix	=	distributedRowsNormalized(US)

Then,	to	find	documents	relevant	to	a	document:

import	org.apache.spark.mllib.linalg.Matrices

def	topDocsForDoc(docId:	Long):	Seq[(Double,	Long)]	=	{

		val	docRowArr	=	normalizedUS.rows.zipWithUniqueId.map(_.swap)

				.lookup(docId).head.toArray	

		val	docRowVec	=	Matrices.dense(docRowArr.length,	1,	docRowArr)

		val	docScores	=	normalizedUS.multiply(docRowVec)	

		val	allDocWeights	=	docScores.rows.map(_.toArray(0)).

				zipWithUniqueId()	

		allDocWeights.filter(!_._1.isNaN).top(10)	

}

def	printTopDocsForDoc(doc:	String):	Unit	=	{

		val	idWeights	=	topDocsForDoc(idDocs(doc))

		println(idWeights.map	{	case	(score,	id)	=>

				(docIds(id),	score)

		}.mkString(",	"))

}

Look	up	the	row	in	US	corresponding	to	the	given	doc	ID.

Compute	scores	against	every	doc.



Find	the	docs	with	the	highest	scores.

Docs	can	end	up	with	NaN	score	if	their	row	in	U	is	all	zeros.	Filter	these
out.

Here	are	the	most	similar	documents	for	a	few	example	documents:

queryEngine.printTopDocsForDoc("Romania")

(Romania,0.9999999999999994),	(Roma	in	Romania,0.9229332158078395),

(Kingdom	of	Romania,0.9176138537751187),

(Anti-Romanian	discrimination,0.9131983116426412),

(Timeline	of	Romanian	history,0.9124093989500675),

(Romania	and	the	euro,0.9123191881625798),

(History	of	Romania,0.9095848558045102),

(Romania–United	States	relations,0.9016913779787574),

(Wiesel	Commission,0.9016106300096606),

(List	of	Romania-related	topics,0.8981305676612493)

queryEngine.printTopDocsForDoc("Brad	Pitt")

(Brad	Pitt,0.9999999999999984),	(Aaron	Eckhart,0.8935447577397551),

(Leonardo	DiCaprio,0.8930359829082504),	(Winona	Ryder,0.8903497762653693),

(Ryan	Phillippe,0.8847178312465214),	(Claudette	Colbert,0.8812403821804665),

(Clint	Eastwood,0.8785765085978459),	(Reese	Witherspoon,0.876540742663427),

(Meryl	Streep	in	the	2000s,0.8751593996242115),

(Kate	Winslet,0.873124888198288)

queryEngine.printTopDocsForDoc("Radiohead")

(Radiohead,1.0000000000000016),	(Fightstar,0.9461712602479349),

(R.E.M.,0.9456251852095919),	(Incubus	(band),0.9434650141836163),

(Audioslave,0.9411291455765148),	(Tonic	(band),0.9374518874425788),

(Depeche	Mode,0.9370085419199352),	(Megadeth,0.9355302294384438),

(Alice	in	Chains,0.9347862053793862),	(Blur	(band),0.9347436350811016)



Document-Term	Relevance
What	about	computing	a	relevance	score	between	a	term	and	a	document?	This
is	equivalent	to	finding	the	element	corresponding	to	that	term	and	document
in	the	reduced-rank	approximation	of	the	document-term	matrix.	This	is	equal
to	udT	S	vt,	where	ud	is	the	row	in	U	corresponding	to	the	document,	and	vt	is
the	row	in	V	corresponding	to	the	term.	Some	simple	linear	algebra
manipulation	reveals	that	computing	a	similarity	between	a	term	and	every
document	is	equivalent	to	US	vt.	Each	element	in	the	resulting	vector	will
contain	a	similarity	between	a	document	and	the	query	term.	In	the	other
direction,	the	similarity	between	a	document	and	every	term	comes	from	udT

SV:

def	topDocsForTerm(termId:	Int):	Seq[(Double,	Long)]	=	{

		val	rowArr	=	(0	until	svd.V.numCols).

				map(i	=>	svd.V(termId,	i)).toArray

		val	rowVec	=	Matrices.dense(termRowArr.length,	1,	termRowArr)

		val	docScores	=	US.multiply(rowVec)	

		val	allDocWeights	=	docScores.rows.map(_.toArray(0)).

				zipWithUniqueId()	

		allDocWeights.top(10)

}

def	printTopDocsForTerm(term:	String):	Unit	=	{

		val	idWeights	=	topDocsForTerm(US,	svd.V,	idTerms(term))

		println(idWeights.map	{	case	(score,	id)	=>

				(docIds(id),	score)

		}.mkString(",	"))

}

Compute	scores	against	every	doc.

Find	the	docs	with	the	highest	scores.

queryEngine.printTopDocsForTerm("fir")

(Silver	tree,0.006292909647173194),

(See	the	forest	for	the	trees,0.004785047583508223),

(Eucalyptus	tree,0.004592837783089319),

(Sequoia	tree,0.004497446632469554),

(Willow	tree,0.004442871594515006),



(Coniferous	tree,0.004429936059594164),

(Tulip	Tree,0.004420469113273123),

(National	tree,0.004381572286629475),

(Cottonwood	tree,0.004374705020233878),

(Juniper	Tree,0.004370895085141889)

queryEngine.printTopDocsForTerm("graph")

(K-factor	(graph	theory),0.07074443599385992),

(Mesh	Graph,0.05843133228896666),	(Mesh	graph,0.05843133228896666),

(Grid	Graph,0.05762071784234877),	(Grid	graph,0.05762071784234877),

(Graph	factor,0.056799669054782564),	(Graph	(economics),0.05603848473056094),

(Skin	graph,0.05512936759365371),	(Edgeless	graph,0.05507918292342141),

(Traversable	graph,0.05507918292342141)



Multiple-Term	Queries
Lastly,	what	about	servicing	queries	with	multiple	terms?	That	is,	finding
documents	relevant	to	a	single	term	involved	by	selecting	the	row
corresponding	to	that	term	from	V.	This	is	equivalent	to	multiplying	V	by	a
term	vector	with	a	single	nonzero	entry.	To	move	to	multiple	terms,	instead
compute	the	concept-space	vector	by	simply	multiplying	V	by	a	term	vector
with	nonzero	entries	for	multiply	terms.	To	maintain	the	weighting	scheme
used	for	the	original	document-term	matrix,	set	the	value	for	each	term	in	the
query	to	its	inverse	document	frequency:

termIdfs	=	idfModel.idf.toArray

In	one	sense,	querying	in	this	way	is	like	adding	a	new	document	to	the	corpus
with	just	a	few	terms,	finding	its	representation	as	a	new	row	of	the	low-rank
document-term	matrix	approximation,	and	then	discovering	the	cosine
similarity	between	it	and	the	other	entries	in	this	matrix:

import	breeze.linalg.{SparseVector	=>	BSparseVector}

def	termsToQueryVector(terms:	Seq[String])

		:	BSparseVector[Double]	=	{

		val	indices	=	terms.map(idTerms(_)).toArray

		val	values	=	terms.map(idfs(_)).toArray

		new	BSparseVector[Double](indices,	values,	idTerms.size)

}

def	topDocsForTermQuery(query:	BSparseVector[Double])

		:	Seq[(Double,	Long)]	=	{

		val	breezeV	=	new	BDenseMatrix[Double](V.numRows,	V.numCols,

				V.toArray)

		val	termRowArr	=	(breezeV.t	*	query).toArray

		val	termRowVec	=	Matrices.dense(termRowArr.length,	1,	termRowArr)

		val	docScores	=	US.multiply(termRowVec)	

		val	allDocWeights	=	docScores.rows.map(_.toArray(0)).

				zipWithUniqueId()	

		allDocWeights.top(10)

}

def	printTopDocsForTermQuery(terms:	Seq[String]):	Unit	=	{

		val	queryVec	=	termsToQueryVector(terms)

		val	idWeights	=	topDocsForTermQuery(queryVec)

		println(idWeights.map	{	case	(score,	id)	=>

				(docIds(id),	score)

		}.mkString(",	"))



}

Compute	scores	against	every	doc

Find	the	docs	with	the	highest	scores

queryEngine.printTopDocsForTermQuery(Seq("factorization",	"decomposition"))

(K-factor	(graph	theory),0.04335677416674133),

(Matrix	Algebra,0.038074479507460755),

(Matrix	algebra,0.038074479507460755),

(Zero	Theorem,0.03758005783639301),

(Birkhoff-von	Neumann	Theorem,0.03594539874814679),

(Enumeration	theorem,0.03498444607374629),

(Pythagoras'	theorem,0.03489110483887526),

(Thales	theorem,0.03481592682203685),

(Cpt	theorem,0.03478175099368145),

(Fuss'	theorem,0.034739350150484904)



Where	to	Go	from	Here
SVD	and	its	sister	technique,	PCA,	have	a	wide	variety	of	applications	outside
of	text	analysis.	A	common	method	of	recognizing	human	faces	known	as
eigenfaces	relies	on	it	to	understand	the	patterns	of	variation	in	human
appearance.	In	climate	research,	it	is	used	to	find	global	temperature	trends
from	disparate	noisy	data	sources	like	tree	rings.	Michael	Mann’s	famous
“hockey	stick”	graph,	depicting	the	rise	of	temperatures	throughout	the	20th
century,	in	fact	depicts	a	concept.	SVD	and	PCA	are	also	useful	in	the
visualization	of	high-dimensional	data	sets.	When	a	data	set	is	reduced	down	to
its	first	two	or	three	concepts,	it	can	be	plotted	on	a	graph	that	humans	can
view.

A	variety	of	other	methods	exist	for	understanding	large	corpora	of	text.	For
example,	a	technique	known	as	latent	dirichlet	allocation	is	useful	in	many
similar	applications.	As	a	topic	model,	it	infers	a	set	of	topics	from	a	corpus
and	assigns	each	document	a	level	of	participation	in	each	topic.

http://bit.ly/2qcHozy
http://bit.ly/2jxBq8h


Chapter	7.	Analyzing	Co-Occurrence
Networks	with	GraphX
Josh	Wills

It’s	a	small	world.	It	keeps	recrossing	itself.
David	Mitchell

Data	scientists	come	in	all	shapes	and	sizes	from	a	remarkably	diverse	set	of
academic	backgrounds.	Although	many	have	some	training	in	disciplines	like
computer	science,	mathematics,	and	physics,	others	have	studied	neuroscience,
sociology,	and	political	science.	Although	these	fields	study	different	things
(e.g.,	brains,	people,	political	institutions)	and	have	not	traditionally	required
students	to	learn	how	to	program,	they	all	share	two	important	characteristics
that	have	made	them	fertile	training	ground	for	data	scientists.

First,	all	of	these	fields	are	interested	in	understanding	relationships	between
entities,	whether	between	neurons,	individuals,	or	countries,	and	how	these
relationships	affect	the	observed	behavior	of	the	entities.	Second,	the	explosion
of	digital	data	over	the	past	decade	has	given	researchers	access	to	vast
quantities	of	information	about	these	relationships	and	required	that	they
develop	new	skills	in	order	to	acquire	and	manage	these	data	sets.

As	these	researchers	began	to	collaborate	with	each	other	and	with	computer
scientists,	they	also	discovered	that	many	of	the	techniques	they	were	using	to
analyze	relationships	could	be	applied	to	problems	across	domains,	and	the
field	of	network	science	was	born.	Network	science	applies	tools	from	graph
theory,	the	mathematical	discipline	that	studies	the	properties	of	pairwise
relationships	(called	edges)	between	a	set	of	entities	(called	vertices).	Graph
theory	is	also	widely	used	in	computer	science	to	study	everything	from	data
structures	to	computer	architecture	to	the	design	of	networks	like	the	internet.

Graph	theory	and	network	science	have	had	a	significant	impact	in	the	business
world	as	well.	Almost	every	major	internet	company	derives	a	significant
fraction	of	its	value	from	its	ability	to	build	and	analyze	an	important	network
of	relationships	better	than	any	of	its	competitors:	the	recommendation



algorithms	used	at	Amazon	and	Netflix	rely	on	the	networks	of	consumer-item
purchases	(Amazon)	and	user-movie	ratings	(Netflix)	that	each	company
creates	and	controls.	Facebook	and	LinkedIn	have	built	graphs	of	relationships
between	people	that	they	analyze	in	order	to	organize	content	feeds,	promote
advertisements,	and	broker	new	connections.	And	perhaps	most	famously	of
all,	Google	used	the	PageRank	algorithm	that	the	founders	developed	to	create
a	fundamentally	better	way	to	search	the	web.

The	computational	and	analytical	needs	of	these	network-centric	companies
helped	drive	the	creation	of	distributed	processing	frameworks	like
MapReduce	as	well	as	the	hiring	of	data	scientists	who	were	capable	of	using
these	new	tools	to	analyze	and	create	value	from	the	ever-expanding	volume	of
data.	One	of	the	earliest	use	cases	for	MapReduce	was	to	create	a	scalable	and
reliable	way	to	solve	the	equation	at	the	heart	of	PageRank.	Over	time,	as	the
graphs	became	larger	and	data	scientists	needed	to	analyze	them	faster,	new
graph-parallel	processing	frameworks	—	like	Pregel	at	Google,	Giraph	at
Yahoo!,	and	GraphLab	at	Carnegie	Mellon	—	were	developed.	These
frameworks	supported	fault-tolerant,	in-memory,	iterative,	and	graph-centric
processing,	and	were	capable	of	performing	certain	types	of	graph
computations	orders	of	magnitude	faster	than	the	equivalent	data-parallel
MapReduce	jobs.

In	this	chapter,	we’re	going	to	introduce	a	Spark	library	called	GraphX,	which
extends	Spark	to	support	many	of	the	graph-parallel	processing	tasks	that
Pregel,	Giraph,	and	GraphLab	support.	Although	it	cannot	handle	every	graph
computation	as	quickly	as	the	custom	graph	frameworks	do,	the	fact	that	it	is	a
Spark	library	means	that	it	is	relatively	easy	to	bring	GraphX	into	your	normal
data	analysis	workflow	whenever	you	want	to	analyze	a	network-centric	data
set.	With	it,	you	can	combine	graph-parallel	programming	with	the	familiar
Spark	abstractions	you	are	used	to	working	with.

GRAPHX	AND	GRAPHFRAMES

GraphX	was	created	prior	to	the	introduction	of	DataFrames	in	Spark	1.3,	and	its	APIs	are	all
designed	to	work	with	RDDs.	More	recently,	effort	is	being	made	to	port	GraphX	to	the	new	APIs
developed	around	DataFrames;	it	is	called	(appropriately	enough)	GraphFrames.	GraphFrames
promises	a	number	of	benefits	over	the	legacy	GraphX	API,	including	richer	support	for	reading	and
writing	graphs	to	serialized	data	formats	via	the	DataFrame	API	and	expressive	graph	queries.

At	the	time	we	were	writing	the	second	edition	of	the	book,	not	all	of	the	analyses	that	we	conduct	in



this	chapter	were	possible	against	the	GraphFrames	API	on	Spark	2.1,	so	we	decided	to	continue
using	the	fully	functional	GraphX	API	for	this	chapter.	The	good	news	is	that	the	GraphFrames	API
takes	a	lot	of	inspiration	from	GraphX,	so	all	the	methods	and	concepts	we	introduce	in	this	chapter
have	a	one-to-one	mapping	to	GraphFrames.	We’re	looking	forward	to	migrating	to	GraphFrames	for
the	(currently	purely	hypothetical)	next	edition	of	this	book;	you	can	follow	the	status	of	the	project.

http://graphframes.github.io


The	MEDLINE	Citation	Index:	A	Network	Analysis
MEDLINE	(Medical	Literature	Analysis	and	Retrieval	System	Online)	is	a
database	of	academic	papers	that	have	been	published	in	journals	covering	the
life	sciences	and	medicine.	It	is	managed	and	released	by	the	US	National
Library	of	Medicine	(NLM),	a	division	of	the	National	Institutes	of	Health
(NIH).	Its	citation	index,	which	tracks	the	publication	of	articles	across
thousands	of	journals,	can	trace	its	history	back	to	1879,	and	it	has	been
available	online	to	medical	schools	since	1971	and	to	the	general	public	via	the
web	since	1996.	The	main	database	contains	more	than	20	million	articles
going	back	to	the	early	1950s	and	is	updated	5	days	a	week.

Due	to	the	volume	of	citations	and	the	frequency	of	updates,	the	research
community	developed	an	extensive	set	of	semantic	tags,	called	MeSH	(Medical
Subject	Headings),	that	are	applied	to	all	of	the	citations	in	the	index.	These
tags	provide	a	meaningful	framework	that	can	be	used	to	explore	relationships
between	documents	to	facilitate	literature	reviews,	and	they	have	also	been	used
as	the	basis	for	building	data	products:	in	2001,	PubGene	demonstrated	one	of
the	first	production	applications	of	biomedical	text	mining	by	launching	a
search	engine	that	allowed	users	to	explore	the	graph	of	MeSH	terms	that
connect	related	documents	together.

In	this	chapter,	we’re	going	to	use	Scala,	Spark,	and	GraphX	to	acquire,
transform,	and	then	analyze	the	network	of	MeSH	terms	on	a	recently
published	subset	of	citation	data	from	MEDLINE.	The	network	analysis	we’ll
be	performing	was	inspired	by	the	paper	“Large-Scale	Structure	of	a	Network
of	Co-Occurring	MeSH	Terms:	Statistical	Analysis	of	Macroscopic
Properties”,	by	Kastrin	et	al.	(2014),	although	we’ll	be	using	a	different	subset
of	the	citation	data	and	performing	the	analysis	with	GraphX	instead	of	the	R
packages	and	C++	code	used	in	that	paper.

Our	goal	will	be	to	get	a	feel	for	the	shape	and	properties	of	the	citation	graph.
We’ll	attack	this	from	a	few	different	angles	to	get	a	full	view	of	the	data	set.
First,	we’ll	get	our	feet	wet	by	looking	at	the	major	topics	and	their	co-
occurrences	—	a	simpler	analysis	that	doesn’t	require	using	GraphX.	Then
we’ll	look	for	connected	components	—	can	one	follow	a	path	of	citations

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090190/


from	any	topic	to	any	other	topic,	or	is	the	data	actually	a	set	of	separate
smaller	graphs?	We’ll	move	on	to	look	at	the	degree	distribution	of	the	graph,
which	gives	a	sense	of	how	the	relevance	of	topics	can	vary,	and	find	the	topics
that	are	connected	to	the	most	other	topics.	Last,	we’ll	compute	a	couple	of
slightly	more	advanced	graph	statistics:	the	clustering	coefficient	and	the
average	path	length.	Among	other	uses,	these	allow	us	to	understand	how
similar	the	citation	graph	is	to	other	common	real-world	graphs	like	the	web
and	Facebook’s	social	network.



Getting	the	Data
We	can	retrieve	a	sample	of	the	citation	index	data	from	the	NIH’s	FTP	server:

$	mkdir	medline_data

$	cd	medline_data

$	wget	ftp://ftp.nlm.nih.gov/nlmdata/sample/medline/*.gz

Let’s	uncompress	the	citation	data	and	examine	it	before	we	load	it	into	HDFS:

$	gunzip	*.gz

$	ls	-ltr

...

total	1814128

-rw-r--r--		1	jwills		staff		145188012	Dec		3		2015	medsamp2016h.xml

-rw-r--r--		1	jwills		staff		133663105	Dec		3		2015	medsamp2016g.xml

-rw-r--r--		1	jwills		staff		131298588	Dec		3		2015	medsamp2016f.xml

-rw-r--r--		1	jwills		staff		156910066	Dec		3		2015	medsamp2016e.xml

-rw-r--r--		1	jwills		staff		112711106	Dec		3		2015	medsamp2016d.xml

-rw-r--r--		1	jwills		staff		105189622	Dec		3		2015	medsamp2016c.xml

-rw-r--r--		1	jwills		staff			72705330	Dec		3		2015	medsamp2016b.xml

-rw-r--r--		1	jwills		staff			71147066	Dec		3		2015	medsamp2016a.xml

The	sample	files	contain	about	600	MB	of	XML-formatted	data,
uncompressed.	Each	entry	in	the	sample	files	is	a	MedlineCitation	record,
which	contains	information	about	the	publication	of	an	article	in	a	biomedical
journal,	including	the	journal	name,	issue,	publication	date,	the	names	of	the
authors,	the	abstract,	and	the	set	of	MeSH	keywords	that	are	associated	with	the
article.	In	addition,	each	of	the	MeSH	keywords	has	an	attribute	to	indicate
whether	or	not	the	concept	the	keyword	refers	to	was	a	major	topic	of	the
article.	Let’s	take	a	look	at	the	first	citation	record	in	medsamp2016a.xml:

<MedlineCitation	Owner="PIP"	Status="MEDLINE">

<PMID	Version="1">12255379</PMID>

<DateCreated>

		<Year>1980</Year>

		<Month>01</Month>

		<Day>03</Day>

</DateCreated>

...

<MeshHeadingList>

...

		<MeshHeading>

				<DescriptorName	MajorTopicYN="N">Humans</DescriptorName>

		</MeshHeading>

		<MeshHeading>

				<DescriptorName	MajorTopicYN="Y">Intelligence</DescriptorName>

		</MeshHeading>



		<MeshHeading>

				<DescriptorName	MajorTopicYN="Y">Rorschach	Test</DescriptorName>

		</MeshHeading>

...

</MeshHeadingList>

...

</MedlineCitation>

In	our	latent	semantic	analysis	of	Wikipedia	articles,	we	were	primarily
interested	in	the	unstructured	article	text	contained	in	each	of	the	XML	records.
But	for	our	co-occurrence	analysis,	we’re	going	to	want	to	extract	the	values
contained	within	the	DescriptorName	tags	by	parsing	the	structure	of	the	XML
directly.	Fortunately,	Scala	comes	with	an	excellent	library	called	scala-xml	for
parsing	and	querying	XML	documents	directly,	which	we	can	use	to	help	us
out.

Let’s	get	started	by	loading	the	citation	data	into	HDFS:

$	hadoop	fs	-mkdir	medline

$	hadoop	fs	-put	*.xml	medline

Now	we	can	start	up	an	instance	of	the	Spark	shell.	The	chapter	relies	on	the
code	described	in	Chapter	6	for	parsing	XML-formatted	data.	To	compile	this
code	into	a	JAR	so	that	we	can	make	use	of	it,	go	into	the	ch07-graph/
directory	in	the	Git	repo	and	build	it	with	Maven:

$	cd	ch07-graph/

$	mvn	package

$	cd	target

$	spark-shell	--jars	ch07-graph-2.0.0-jar-with-dependencies.jar

Let’s	write	a	function	to	read	the	XML-formatted	MEDLINE	data	into	the	shell:

import	edu.umd.cloud9.collection.XMLInputFormat

import	org.apache.spark.sql.{Dataset,	SparkSession}

import	org.apache.hadoop.io.{Text,	LongWritable}

import	org.apache.hadoop.conf.Configuration

def	loadMedline(spark:	SparkSession,	path:	String)	=	{

		import	spark.implicits._

		@transient	val	conf	=	new	Configuration()

		conf.set(XMLInputFormat.START_TAG_KEY,	"<MedlineCitation	")

		conf.set(XMLInputFormat.END_TAG_KEY,	"</MedlineCitation>")

		val	sc	=	spark.sparkContext

		val	in	=	sc.newAPIHadoopFile(path,	classOf[XMLInputFormat],

						classOf[LongWritable],	classOf[Text],	conf)

		in.map(line	=>	line._2.toString).toDS()

}

val	medlineRaw	=	loadMedline(spark,	"medline")



We	are	setting	the	value	of	the	START_TAG_KEY	configuration	parameter	to	be
the	prefix	of	the	MedlineCitation	start	tag,	because	the	values	of	the	tag’s
attributes	may	change	from	record	to	record.	The	XmlInputFormat	will	include
these	varying	attributes	in	the	record	values	that	are	returned.



Parsing	XML	Documents	with	Scala’s	XML	Library
Scala	has	an	interesting	history	with	XML.	Since	version	1.2,	Scala	has	treated
XML	as	a	first-class	data	type.	This	means	that	the	following	code	is
syntactically	valid:

import	scala.xml._

val	cit	=	<MedlineCitation>data</MedlineCitation>

This	support	for	XML	literals	has	always	been	somewhat	unusual	among
major	programming	languages,	especially	as	other	serialization	formats	such
as	JSON	have	come	into	widespread	use.	In	2012,	Martin	Odersky	published
the	following	note	to	the	Scala	language	mailing	list:

[XML	literals]	Seemed	a	great	idea	at	the	time,	now	it	sticks	out	like	a	sore
thumb.	I	believe	with	the	new	string	interpolation	scheme	we	will	be	able	to
put	all	of	XML	processing	in	the	libraries,	which	should	be	a	big	win.

As	of	Scala	2.11,	the	scala.xml	package	is	no	longer	a	part	of	the	core	Scala
libraries.	After	you	upgrade,	you	will	need	to	explicitly	include	the	scala-xml
dependency	to	use	the	Scala	XML	libraries	in	your	projects.

With	that	caveat	in	mind,	Scala’s	support	for	parsing	and	querying	XML
documents	is	truly	excellent,	and	we	will	be	availing	ourselves	of	it	to	help
extract	the	information	we	want	from	the	MEDLINE	citations.	Let’s	get	started
by	pulling	the	unparsed	first	citation	record	into	our	Spark	shell:

val	rawXml	=	medlineRaw.take(1)(0)

val	elem	=	XML.loadString(rawXml)

The	elem	variable	is	an	instance	of	the	scala.xml.Elem	class,	which	is	how
Scala	represents	an	individual	node	in	an	XML	document.	The	class	contains	a
number	of	built-in	functions	for	retrieving	information	about	the	node	and	its
contents,	such	as:

elem.label

elem.attributes



It	also	contains	a	small	set	of	operators	for	finding	the	children	of	a	given
XML	node;	the	first	one,	for	retrieving	a	node’s	direct	children	by	name,	is
called	\:

elem	\	"MeshHeadingList"

...

NodeSeq(<MeshHeadingList>

<MeshHeading>

<DescriptorName	MajorTopicYN="N">Behavior</DescriptorName>

</MeshHeading>

...

The	\	operator	only	works	on	direct	children	of	the	node;	if	we	execute	elem	\
"MeshHeading",	the	result	is	an	empty	NodeSeq.	To	extract	nondirect	children	of
a	given	node,	we	need	to	use	the	\\	operator:

elem	\\	"MeshHeading"

...

NodeSeq(<MeshHeading>

<DescriptorName	MajorTopicYN="N">Behavior</DescriptorName>

</MeshHeading>,

...

We	can	also	use	the	\\	operator	to	get	at	the	DescriptorName	entries	directly,
and	then	retrieve	the	MeSH	tags	within	each	node	by	calling	the	text	function
on	each	element	of	the	NodeSeq:

(elem	\\	"DescriptorName").map(_.text)

...

List(Behavior,	Congenital	Abnormalities,	...

Finally,	note	that	each	of	the	DescriptorName	entries	has	an	attribute	called
MajorTopicYN	that	indicates	whether	or	not	this	MeSH	tag	was	a	major	topic	of
the	cited	article.	We	can	look	up	the	value	of	attributes	of	XML	tags	using	the	\
and	\\	operators	if	we	preface	the	attribute	name	with	an	@	symbol.	We	can
use	this	to	create	a	filter	that	only	returns	the	names	of	the	major	MeSH	tags
for	each	article:

def	majorTopics(record:	String):	Seq[String]	=	{

		val	elem	=	XML.loadString(record)

		val	dn	=	elem	\\	"DescriptorName"

		val	mt	=	dn.filter(n	=>	(n	\	"@MajorTopicYN").text	==	"Y")

		mt.map(n	=>	n.text)

}



majorTopics(elem)

Now	that	we	have	our	XML	parsing	code	working	locally,	let’s	apply	it	to
parse	the	MeSH	codes	for	each	citation	record	in	our	RDD	and	cache	the
result:

val	medline	=	medlineRaw.map(majorTopics)

medline.cache()

medline.take(1)(0)



Analyzing	the	MeSH	Major	Topics	and	Their	Co-
Occurrences
Now	that	we’ve	extracted	the	MeSH	tags	we	want	from	the	MEDLINE	citation
records,	let’s	get	a	feel	for	the	overall	distribution	of	tags	in	our	data	set	by
calculating	some	basic	summary	statistics	using	Spark	SQL,	such	as	the
number	of	records	and	a	histogram	of	the	frequencies	of	various	major	MeSH
topics:

medline.count()

val	topics	=	medline.flatMap(mesh	=>	mesh).toDF("topic")

topics.createOrReplaceTempView("topics")

val	topicDist	=	spark.sql("""

		SELECT	topic,	COUNT(*)	cnt

		FROM	topics

		GROUP	BY	topic

		ORDER	BY	cnt	DESC""")

topicDist.count()

...

res:	Long	=	14548

topicDist.show()

...

+--------------------+----+

|															topic|	cnt|

+--------------------+----+

|												Research|1649|

|													Disease|1349|

|											Neoplasms|1123|

|								Tuberculosis|1066|

|							Public	Policy|	816|

|							Jurisprudence|	796|

|										Demography|	763|

|	Population	Dynamics|	753|

|											Economics|	690|

|												Medicine|	682|

...

The	most	frequently	occurring	major	topics	are,	unsurprisingly,	some	of	the
most	general	ones,	like	the	uber-generic	Research	and	Disease,	or	the	slightly
less	generic	Neoplasms	and	Tuberculosis.	Fortunately,	there	are	more	than
13,000	different	major	topics	in	our	data	set,	and	given	that	the	most
frequently	occurring	major	topic	only	occurs	in	a	tiny	fraction	of	all	the
documents	(1,649/240,000	~	0.7%),	we	would	expect	that	the	overall
distribution	of	the	number	of	documents	containing	a	topic	has	a	relatively
long	tail.	We	can	verify	this	by	creating	a	frequency	count	of	the	values	of	the
topicDist	DataFrame:



topicDist.createOrReplaceTempView("topic_dist")

spark.sql("""

		SELECT	cnt,	COUNT(*)	dist

		FROM	topic_dist

		GROUP	BY	cnt

		ORDER	BY	dist	DESC

		LIMIT	10""").show()

...

+---+----+

|cnt|dist|

+---+----+

|		1|3106|

|		2|1699|

|		3|1207|

|		4|	902|

|		5|	680|

|		6|	571|

|		7|	490|

|		8|	380|

|		9|	356|

|	10|	296|

+---+----+

Of	course,	our	primary	interest	is	in	co-occurring	MeSH	topics.	Each	entry	in
the	medline	data	set	is	a	list	of	strings	that	are	the	names	of	topics	that	are
mentioned	in	each	citation	record.	To	get	the	co-occurrences,	we	need	to
generate	all	of	the	two-element	subsets	of	this	list	of	strings.	Fortunately,
Scala’s	Collections	library	has	a	built-in	method	called	combinations	to	make
generating	these	sublists	extremely	easy.	combinations	returns	an	Iterator,
meaning	that	the	combinations	need	not	all	be	held	in	memory	at	the	same
time:

val	list	=	List(1,	2,	3)

val	combs	=	list.combinations(2)

combs.foreach(println)

When	using	this	function	to	generate	sublists	that	we	are	going	to	aggregate
with	Spark,	we	need	to	be	careful	that	all	of	the	lists	are	sorted	in	the	same	way.
This	is	because	the	lists	returned	from	the	combinations	function	depend	on
the	order	of	the	input	elements,	and	lists	with	the	same	elements	in	a	different
order	are	not	equal	to	one	another:

val	combs	=	list.reverse.combinations(2)

combs.foreach(println)

List(3,	2)	==	List(2,	3)

Therefore,	when	we	generate	the	two-element	sublists	for	each	citation	record,



we’ll	ensure	that	the	list	of	topics	is	sorted	before	we	call	combinations:

val	topicPairs	=	medline.flatMap(t	=>	{

		t.sorted.combinations(2)

}).toDF("pairs")

topicPairs.createOrReplaceTempView("topic_pairs")

val	cooccurs	=		spark.sql("""

		SELECT	pairs,	COUNT(*)	cnt

		FROM	topic_pairs

		GROUP	BY	pairs""")

cooccurs.cache()

cooccurs.count()

Because	there	are	14,548	topics	in	our	data,	there	are	potentially
14,548*14,547/2	=	105,814,878	unordered	co-occurrence	pairs.	However,	the
count	of	co-occurrences	reveals	that	only	213,745	pairs	actually	appear	in	the
data	set,	a	tiny	fraction	of	the	possible	pairs.	If	we	look	at	the	most	frequently
appearing	co-occurrence	pairs	in	the	data,	we	see	this:

cooccurs.createOrReplaceTempView("cooccurs")

spark.sql("""

		SELECT	pairs,	cnt

		FROM	cooccurs

		ORDER	BY	cnt	DESC

		LIMIT	10""").collect().foreach(println)

...

[WrappedArray(Demography,	Population	Dynamics),288]

[WrappedArray(Government	Regulation,	Social	Control,	Formal),254]

[WrappedArray(Emigration	and	Immigration,	Population	Dynamics),230]

[WrappedArray(Acquired	Immunodeficiency	Syndrome,	HIV	Infections),220]

[WrappedArray(Antibiotics,	Antitubercular,	Dermatologic	Agents),205]

[WrappedArray(Analgesia,	Anesthesia),183]

[WrappedArray(Economics,	Population	Dynamics),181]

[WrappedArray(Analgesia,	Anesthesia	and	Analgesia),179]

[WrappedArray(Anesthesia,	Anesthesia	and	Analgesia),177]

[WrappedArray(Population	Dynamics,	Population	Growth),174]

As	we	might	have	suspected	from	the	counts	of	the	most	frequently	occurring
major	topics,	the	most	frequently	occurring	co-occurrence	pairs	are	also
relatively	uninteresting.	Most	of	the	top	pairs,	such	as	(Demography,
Population	Dynamics),	are	either	the	product	of	two	of	the	most	frequently
occurring	individual	topics,	or	terms	that	occur	together	so	frequently	that	they
are	nearly	synonyms,	like	(Analgesia,	Anesthesia).	There’s	nothing	surprising
or	informative	about	the	fact	that	these	topic	pairs	exist	in	the	data.



Constructing	a	Co-Occurrence	Network	with
GraphX
As	we	saw	in	the	preceding	section,	when	we’re	studying	co-occurrence
networks,	our	standard	tools	for	summarizing	data	don’t	provide	us	much
insight.	The	overall	summary	statistics	we	can	calculate,	like	raw	counts,	don’t
give	us	a	feel	for	the	overall	structure	of	the	relationships	in	the	network,	and
the	co-occurrence	pairs	that	we	can	see	at	the	extremes	of	the	distribution	are
usually	the	ones	that	we	care	about	least.

What	we	really	want	to	do	is	analyze	the	co-occurrence	network:	by	thinking
of	the	topics	as	vertices	in	a	graph,	and	the	existence	of	a	citation	record	that
features	both	topics	as	an	edge	between	those	two	vertices.	Then,	we	could
compute	network-centric	statistics	that	would	help	us	understand	the	overall
structure	of	the	network	and	identify	interesting	local	outlier	vertices	that	are
worthy	of	further	investigation.

We	can	also	use	co-occurrence	networks	to	identify	meaningful	interactions
between	entities	that	are	worthy	of	further	investigation.	Figure	7-1	shows	part
of	a	co-occurrence	graph	for	combinations	of	cancer	drugs	that	were
associated	with	adverse	events	in	the	patients	who	were	taking	them.	We	can
use	the	information	in	these	graphs	to	help	us	design	clinical	trials	to	study
these	interactions.



Figure	7-1.	Partial	co-occurrence	graph	for	combinations	of	cancer	drugs	associated	with	adverse
events	in	patients

In	the	same	way	that	MLlib	provides	a	set	of	patterns	and	algorithms	for
creating	machine	learning	models	in	Spark,	GraphX	is	a	Spark	library	that	is
designed	to	help	us	analyze	various	kinds	of	networks	using	the	language	and
tools	of	graph	theory.	Because	GraphX	builds	on	top	of	Spark,	it	inherits	all	of
Spark’s	scalability	properties,	which	means	that	it	is	capable	of	carrying	out
analyses	on	extremely	large	graphs	that	are	distributed	across	multiple
machines.	GraphX	also	integrates	well	with	the	rest	of	the	Spark	platform	and,
as	we	will	see,	makes	it	easy	for	data	scientists	to	move	from	writing	data-
parallel	ETL	routines	against	RDDs	to	executing	graph-parallel	algorithms
against	a	graph,	to	analyzing	and	summarizing	the	output	of	the	graph
computation	in	a	data-parallel	fashion	again.	It	is	the	seamless	way	that	GraphX



allows	us	to	introduce	graph-style	processing	into	our	analytic	workflow,
which	makes	it	so	powerful.

Like	the	Dataset	API,	GraphX	is	built	on	top	of	Spark’s	fundamental	data
primitive,	the	RDD.	Specifically,	GraphX	is	based	on	two	custom	RDD
implementations	that	are	optimized	for	working	with	graphs.	The
VertexRDD[VD]	is	a	specialized	implementation	of	RDD[(VertexId,	VD)],	in
which	the	VertexID	type	is	an	instance	of	Long	and	is	required	for	every	vertex,
while	the	VD	can	be	any	other	type	of	data	associated	with	the	vertex,	and	is
called	the	vertex	attribute.	The	EdgeRDD[ED]	is	a	specialized	implementation	of
RDD[Edge[ED]],	where	Edge	is	a	case	class	that	contains	two	VertexId	values
and	an	edge	attribute	of	type	ED.	Both	the	VertexRDD	and	the	EdgeRDD	have
internal	indices	within	each	partition	of	the	data	that	are	designed	to	facilitate
fast	joins	and	attribute	updates.	Given	both	a	VertexRDD	and	an	associated
EdgeRDD,	we	can	create	an	instance	of	the	Graph	class,	which	contains	a	number
of	methods	for	efficiently	performing	graph	computations.

The	first	requirement	in	creating	a	graph	is	to	have	a	Long	value	that	can	be
used	as	an	identifier	for	each	vertex	in	the	graph.	This	is	a	bit	of	a	problem	for
us	in	constructing	our	co-occurrence	network,	because	all	of	our	topics	are
identified	as	strings.	We	need	a	way	to	come	up	with	a	unique	64-bit	value	that
can	be	associated	with	each	topic	string,	and	ideally,	we’d	like	to	do	it	in	a
distributed	fashion	so	that	it	can	be	done	quickly	across	all	of	our	data.

One	option	would	be	to	use	the	built-in	hashCode	method,	which	will	generate	a
32-bit	integer	for	any	given	Scala	object.	For	our	problem,	which	only	has
13,000	vertices	in	the	graph,	the	hash	code	trick	will	probably	work.	But	for
graphs	that	have	millions	or	tens	of	millions	of	vertices,	the	probability	of	a
hash	code	collision	might	be	unacceptably	high.	For	this	reason,	we’re	going
to	copy	a	hashing	implementation	from	Google’s	Guava	Library	to	create	a
unique	64-bit	identifier	for	each	topic	using	the	MD5	hashing	algorithm:

import	java.nio.charset.StandardCharsets

import	java.security.MessageDigest

def	hashId(str:	String):	Long	=	{

	val	bytes	=	MessageDigest.getInstance("MD5").

			digest(str.getBytes(StandardCharsets.UTF_8))

		(bytes(0)	&	0xFFL)	|

		((bytes(1)	&	0xFFL)	<<	8)	|



		((bytes(2)	&	0xFFL)	<<	16)	|

		((bytes(3)	&	0xFFL)	<<	24)	|

		((bytes(4)	&	0xFFL)	<<	32)	|

		((bytes(5)	&	0xFFL)	<<	40)	|

		((bytes(6)	&	0xFFL)	<<	48)	|

		((bytes(7)	&	0xFFL)	<<	56)

}

We	can	apply	this	hashing	function	to	our	MEDLINE	data	to	generate	a	data
frame	that	will	be	the	basis	for	the	set	of	vertices	in	our	co-occurrence	graph.
We	can	also	do	a	simple	verification	check	to	ensure	that	the	hash	value	was
unique	for	each	topic:

import	org.apache.spark.sql.Row

val	vertices	=	topics.map{	case	Row(topic:	String)	=>

(hashId(topic),	topic)	}.toDF("hash",	"topic")

val	uniqueHashes	=	vertices.agg(countDistinct("hash")).take(1)

...

res:	Array[Row]	=	Array([14548])

We	will	generate	the	edges	for	the	graph	from	the	co-occurrence	counts	that
we	created	in	the	previous	section,	using	the	hashing	function	to	map	each
topic	name	to	its	corresponding	vertex	ID.	A	good	habit	to	get	into	when
generating	edges	is	to	ensure	that	the	left	side	VertexId	(which	GraphX	refers
to	as	the	src)	is	less	than	the	right	side	VertexId	(which	GraphX	refers	to	as
the	dst).	Although	most	of	the	algorithms	in	the	GraphX	library	do	not	assume
anything	about	the	relationship	between	src	and	dst,	there	are	a	few	that	do,	so
it’s	a	good	idea	to	implement	this	pattern	early	so	that	you	don’t	have	to	think
about	it	later	on:

import	org.apache.spark.graphx._

val	edges	=	cooccurs.map{	case	Row(topics:	Seq[_],	cnt:	Long)	=>

		val	ids	=	topics.map(_.toString).map(hashId).sorted

		Edge(ids(0),	ids(1),	cnt)

}

Now	that	we	have	both	the	vertices	and	the	edges,	we	can	create	our	Graph
instance	and	mark	it	as	cached	so	we	can	keep	it	around	for	subsequent
processing:

val	vertexRDD	=	vertices.rdd.map{

		case	Row(hash:	Long,	topic:	String)	=>	(hash,	topic)

}

val	topicGraph	=	Graph(vertexRDD,	edges.rdd)



topicGraph.cache()

The	vertexRDD	and	edges	arguments	that	we	used	to	construct	the	Graph
instance	were	regular	RDDs	—	we	didn’t	even	deduplicate	the	entries	in	the
vertices	so	that	there	was	only	a	single	instance	of	each	topic.	Fortunately,	the
Graph	API	does	this	for	us,	converting	the	RDDs	we	passed	in	to	a	VertexRDD
and	an	EdgeRDD,	so	that	the	vertex	counts	are	now	unique:

vertexRDD.count()

...

280464

topicGraph.vertices.count()

...

14548

Note	that	if	there	are	duplicate	entries	in	the	EdgeRDD	for	a	given	pair	of
vertices,	the	Graph	API	will	not	deduplicate	them:	GraphX	allows	us	to	create
multigraphs,	which	can	have	multiple	edges	with	different	values	between	the
same	pair	of	vertices.	This	can	be	useful	in	applications	where	the	vertices	in
the	graph	represent	rich	objects,	like	people	or	businesses,	that	may	have	many
different	kinds	of	relationships	among	them	(e.g.,	friends,	family	members,
customers,	partners,	etc.).	It	also	allows	us	to	treat	the	edges	as	either	directed
or	undirected,	depending	on	the	context.



Understanding	the	Structure	of	Networks
When	we	explore	the	contents	of	a	table,	there	are	a	number	of	summary
statistics	about	the	columns	that	we	want	to	calculate	right	away	so	that	we	can
get	a	feel	for	the	structure	of	the	data	and	explore	any	problem	areas.	The	same
principle	applies	when	we	are	investigating	a	new	graph,	although	the
summary	statistics	we	are	interested	in	are	slightly	different.	The	Graph	class
provides	built-in	methods	for	calculating	a	number	of	these	statistics	and,	in
combination	with	the	regular	Spark	RDD	APIs,	makes	it	easy	for	us	to	quickly
get	a	feel	for	the	structure	of	a	graph	to	guide	our	exploration.



Connected	Components
One	of	the	most	basic	things	we	want	to	know	about	a	graph	is	whether	or	not
it	is	connected.	In	a	connected	graph,	it	is	possible	for	any	vertex	to	reach	any
other	vertex	by	following	a	path,	which	is	simply	a	sequence	of	edges	that	lead
from	one	vertex	to	another.	If	the	graph	isn’t	connected,	it	may	be	divided	into
a	smaller	set	of	connected	subgraphs	that	we	can	investigate	individually.

Connectedness	is	a	fundamental	graph	property,	so	it	shouldn’t	be	surprising
that	GraphX	includes	a	built-in	method	for	identifying	the	connected
components	in	a	graph.	You’ll	note	that	as	soon	as	you	call	the
connectedComponents	method	on	the	graph,	a	number	of	Spark	jobs	will	be
launched,	and	then	you’ll	finally	see	the	result	of	the	computation:

val	connectedComponentGraph	=	topicGraph.connectedComponents()

Look	at	the	type	of	the	object	returned	by	the	connectedComponents	method:	it’s
another	instance	of	the	Graph	class,	but	the	type	of	the	vertex	attribute	is	a
VertexId	that	is	used	as	a	unique	identifier	for	the	component	that	each	vertex
belongs	to.	To	get	a	count	of	the	number	of	connected	components	and	their
size,	we	can	convert	the	VertexRDD	back	into	a	data	frame	and	then	use	our
standard	toolkit:

val	componentDF	=	connectedComponentGraph.vertices.toDF("vid",	"cid")

val	componentCounts	=	componentDF.groupBy("cid").count()

componentCounts.count()

...

878

Let’s	look	a	bit	closer	at	some	of	the	largest	connected	components:

componentCounts.orderBy(desc("count")).show()

...

+--------------------+-----+

|																	cid|count|

+--------------------+-----+

|-9218306090261648869|13610|

|-8193948242717911820|				5|

|-2062883918534425492|				4|

|-8679136035911620397|				3|

|	1765411469112156596|				3|

|-7016546051037489808|				3|

|-7685954109876710390|				3|



|	-784187332742198415|				3|

|	2742772755763603550|				3|

...

The	largest	component	includes	more	than	90%	of	the	vertices,	while	the
second	largest	contains	only	4	vertices	—	a	vanishingly	small	fraction	of	the
graph.	It’s	worthwhile	to	take	a	look	at	the	topics	for	some	of	these	smaller
components,	if	only	to	understand	why	they	were	not	connected	to	the	largest
component.	To	see	the	names	of	the	topics	associated	with	these	smaller
components,	we’ll	need	to	join	the	VertexRDD	for	the	connected	components
graph	with	the	vertices	from	our	original	concept	graph.	VertexRDD	provides
an	innerJoin	transformation	that	can	take	advantage	of	the	way	GraphX	lays
out	data	for	much	better	performance	than	Spark’s	regular	join
transformation.	The	innerJoin	method	requires	that	we	provide	a	function	on
the	VertexID	and	the	data	contained	inside	each	of	the	two	VertexRDDs	that
returns	a	value	that	will	be	used	as	the	new	data	type	for	the	resulting
VertexRDD.	In	this	case,	we	want	to	understand	the	names	of	the	concepts	for
each	connected	component,	so	we’ll	return	a	data	frame	that	contains	both	the
topic	name	and	the	component	ID:

val	topicComponentDF	=	topicGraph.vertices.innerJoin(

		connectedComponentGraph.vertices)	{

		(topicId,	name,	componentId)	=>	(name,	componentId.toLong)

}.toDF("topic",	"cid")

Let’s	take	a	look	at	the	topic	names	for	the	largest	connected	component	that
wasn’t	a	part	of	the	giant	component:

topicComponentDF.where("cid	=	-2062883918534425492").show()

...

+--------------------+--------------------+

|															topic|																	cid|

+--------------------+--------------------+

|										Serotyping|-2062883918534425492|

|Campylobacter	jejuni|-2062883918534425492|

|Campylobacter	Inf...|-2062883918534425492|

|		Campylobacter	coli|-2062883918534425492|

+--------------------+--------------------+

A	bit	of	Google	searching	reveals	that	“Campylobacter”	is	a	genus	of	bacteria
that	is	one	of	the	most	common	causes	of	food	poisoning,	and	“serotyping”	is
a	technique	used	for	classifying	bacteria	based	on	their	cell	surface	“antigens,”



which	is	a	toxin	that	induces	an	immune	response	in	the	body.	(It’s	this	kind	of
research	work	that	leads	your	average	data	scientist	to	spend	at	least	two	hours
a	day	wandering	around	Wikipedia.)

Let’s	take	a	look	at	the	original	topic	distribution	to	see	if	there	are	any
similarly	named	topics	in	the	data	set	that	did	not	end	up	in	this	cluster:

val	campy	=	spark.sql("""

		SELECT	*

		FROM	topic_dist

		WHERE	topic	LIKE	'%ampylobacter%'""")

campy.show()

...

+--------------------+---+

|															topic|cnt|

+--------------------+---+

|Campylobacter	jejuni|		3|

|Campylobacter	Inf...|		2|

|		Campylobacter	coli|		1|

|							Campylobacter|		1|

|	Campylobacter	fetus|		1|

+--------------------+---+

The	“Campylobacter	fetus”	topic	sounds	similar	to	the	topic	of	our
Campylobacter	cluster,	but	was	not	connected	to	it	via	a	paper	in	the	MEDLINE
citation	data.	A	bit	of	additional	internet	searching	reveals	that	this	subspecies
of	Campylobacter	primarily	occurs	in	cattle	and	sheep,	not	humans,	hence	the
disconnection	in	the	research	literature	in	spite	of	its	similar	name.

The	broader	pattern	we	see	in	this	data	is	that	the	topic	co-occurrence	network
is	tending	toward	being	fully	connected	as	we	add	more	citations	to	it	over
time,	and	there	do	not	appear	to	be	structural	reasons	that	we	would	expect	it	to
become	disconnected	into	distinct	subgraphs.

Under	the	covers,	the	connectedComponents	method	is	performing	a	series	of
iterative	computations	on	our	graph	in	order	to	identify	the	component	that
each	vertex	belongs	to,	taking	advantage	of	the	fact	that	the	VertexId	is	a
unique	numeric	identifier	for	each	vertex.	During	each	phase	of	the
computation,	each	vertex	broadcasts	the	smallest	VertexID	value	that	it	has
seen	to	each	of	its	neighbors.	During	the	first	iteration,	this	will	simply	be	the
vertex’s	own	ID,	but	this	will	generally	be	updated	in	subsequent	iterations.
Each	vertex	keeps	track	of	the	smallest	VertexID	it	has	seen,	and	when	none	of
these	smallest	IDs	changes	during	an	iteration,	the	connected	component
computation	is	complete,	with	each	vertex	assigned	to	the	component	that	is



represented	by	the	smallest	VertexID	value	for	a	vertex	that	was	a	part	of	that
component.	These	kinds	of	iterative	computations	on	graphs	are	common,	and
later	in	this	chapter,	we	will	see	how	we	can	use	this	iterative	pattern	to
compute	other	graph	metrics	that	illuminate	the	structure	of	the	graph.



Degree	Distribution
A	connected	graph	can	be	structured	in	many	different	ways.	For	example,
there	might	be	a	single	vertex	that	is	connected	to	all	of	the	other	vertices,	but
none	of	those	other	vertices	connect	to	each	other.	If	we	eliminated	that	single
central	vertex,	the	graph	would	shatter	into	individual	vertices.	We	might	also
have	a	situation	in	which	every	vertex	in	the	graph	was	connected	to	exactly
two	other	vertices,	so	that	the	entire	connected	component	formed	a	giant	loop.

Figure	7-2	illustrates	how	connected	graphs	may	have	radically	different
degree	distributions.

Figure	7-2.	Degree	distributions	in	connected	graphs

To	gain	additional	insight	into	how	the	graph	is	structured,	it’s	helpful	to	look
at	the	degree	of	each	vertex,	which	is	simply	the	number	of	edges	that	a
particular	vertex	belongs	to.	In	a	graph	without	loops	(i.e.,	an	edge	that
connects	a	vertex	to	itself),	the	sum	of	the	degrees	of	the	vertices	will	be	equal
to	twice	the	number	of	edges,	because	each	edge	will	contain	two	distinct
vertices.

In	GraphX,	we	can	get	the	degree	of	each	vertex	by	calling	the	degrees	method
on	the	Graph	object.	This	method	returns	a	VertexRDD	of	integers	that	is	the
degree	at	each	vertex.	Let’s	get	the	degree	distribution	and	some	basic
summary	statistics	on	it	for	our	concept	network:



val	degrees:	VertexRDD[Int]	=	topicGraph.degrees.cache()

degrees.map(_._2).stats()

...

(count:	13721,	mean:	31.155892,

	stdev:	65.497591,	max:	2596.000000,

	min:	1.000000)

There	are	a	few	interesting	bits	of	information	in	the	degree	distribution.	First,
note	that	the	number	of	entries	in	the	degrees	RDD	is	less	than	the	number	of
vertices	in	the	graph:	while	the	graph	contains	13,034	vertices,	the	degrees
RDD	only	has	12,065	entries.	Some	vertices	have	no	edges	that	touch	them.
This	is	probably	caused	by	citations	in	the	MEDLINE	data	that	only	had	a
single	major	topic,	which	means	that	they	would	not	have	had	any	other	topics
to	co-occur	within	our	data.	We	can	confirm	that	this	is	the	case	by	revisiting
the	original	medline	data	set:

val	sing	=	medline.filter(x	=>	x.size	==	1)

sing.count()

...

44509

val	singTopic	=	sing.flatMap(topic	=>	topic).distinct()

singTopic.count()

...

8243

There	are	8,243	distinct	topics	that	occur	as	singletons	inside	of	44,509
MEDLINE	documents.	Let’s	remove	the	instances	of	those	topics	that	already
occur	in	the	topicPairs	data	set:

val	topic2	=	topicPairs.flatMap(_.getAs[Seq[String]](0))

singTopic.except(topic2).count()

...

827

This	leaves	827	topics	that	only	occur	as	singletons	inside	MEDLINE
documents,	and	14,548–827	is	13,721,	the	number	of	entries	in	the	degrees
RDD.

Next,	note	that	although	the	mean	is	relatively	small,	indicating	that	the	average
vertex	in	the	graph	is	only	connected	to	a	small	fraction	of	the	other	nodes,	the
maximum	value	indicates	that	there	is	at	least	one	highly	connected	node	in	the
graph	that	is	connected	to	almost	a	third	of	the	other	nodes	in	the	graph.

Let’s	take	a	closer	look	at	the	concepts	for	these	high-degree	vertices	by



joining	the	degrees	VertexRDD	to	the	vertices	in	the	concept	graph	using
GraphX’s	innerJoin	method	and	an	associated	function	for	combining	the
name	of	a	concept	and	the	degree	of	the	vertex	into	a	tuple.	Remember,	the
innerJoin	method	only	returns	vertices	that	are	present	in	both	of	the
VertexRDDs,	so	the	concepts	that	do	not	have	any	co-occurring	concepts	will	be
filtered	out.

val	namesAndDegrees	=	degrees.innerJoin(topicGraph.vertices)	{

		(topicId,	degree,	name)	=>	(name,	degree.toInt)

}.values.toDF("topic",	"degree")

When	we	print	the	top	20	elements	of	the	namesAndDegrees	DataFrame	ordered
by	the	value	of	the	degree,	we	get	this:

namesAndDegrees.orderBy(desc("degree")).show()

...

+-------------------+------+

|														topic|degree|

+-------------------+------+

|											Research|		2596|

|												Disease|		1746|

|										Neoplasms|		1202|

|														Blood|			914|

|							Pharmacology|			882|

|							Tuberculosis|			815|

|									Toxicology|			694|

|							Drug	Therapy|			678|

|						Jurisprudence|			661|

|Biomedical	Research|			633|

Unsurprisingly,	most	of	the	high-degree	vertices	refer	to	the	same	generic
concepts	that	we’ve	been	seeing	throughout	this	analysis.	In	the	next	section,
we’ll	use	some	new	functionality	of	the	GraphX	API	and	a	bit	of	old-fashioned
statistics	to	filter	out	some	of	the	less	interesting	co-occurrence	pairs	from	the
graph.



Filtering	Out	Noisy	Edges
In	the	current	co-occurrence	graph,	the	edges	are	weighted	based	on	the	count
of	how	often	a	pair	of	concepts	appears	in	the	same	paper.	The	problem	with
this	simple	weighting	scheme	is	that	it	doesn’t	distinguish	concept	pairs	that
occur	together	because	they	have	a	meaningful	semantic	relationship	from
concept	pairs	that	occur	together	because	they	happen	to	both	occur	frequently
for	any	type	of	document.	We	need	to	use	a	new	edge-weighting	scheme	that
takes	into	account	how	“interesting”	or	“surprising”	a	particular	pair	of
concepts	is	for	a	document	given	the	overall	prevalence	of	those	concepts	in
the	data.	We	will	use	Pearson’s	chi-squared	test	to	calculate	this
“interestingness”	in	a	principled	way	—	that	is,	to	test	whether	the	occurrence
of	a	particular	concept	is	independent	from	the	occurrence	of	another	concept.

For	any	pair	of	concepts	A	and	B,	we	can	create	a	2×2	contingency	table	that
contains	the	counts	of	how	those	concepts	co-occur	in	MEDLINE	documents:

Yes	B No	B A	Total

Yes	A YY YN YA

No	A NY NN NA

B	Total YB NB T

In	this	table,	the	entries	YY,	YN,	NY,	and	NN	represent	the	raw	counts	of
presence/absence	for	concepts	A	and	B.	The	entries	YA	and	NA	are	the	row
sums	for	concept	A,	YB	and	NB	are	the	column	sums	for	concept	B,	and	the
value	T	is	the	total	number	of	documents.

For	the	chi-squared	test,	we	think	of	YY,	YN,	NY,	and	NN	as	sampled	from	an
unknown	distribution.	We	can	compute	a	chi-squared	statistic	from	these
values	with:



Note	that	this	formulation	of	the	chi-squared	statistic	includes	a	term	“-	T	/	2”.
This	is	Yates’s	continuity	correction	and	it	is	not	included	in	some
formulations.

If	our	samples	are	in	fact	independent,	we	would	expect	the	value	of	this
statistic	to	be	drawn	from	a	chi-squared	distribution	with	the	appropriate
degrees	of	freedom.	Where	r	and	c	are	the	cardinalities	of	the	two	random
variables	being	compared,	the	degrees	of	freedom	are	calculated	as	(r–1)(c–
1)=1.	A	large	chi-squared	statistic	indicates	that	the	variables	are	less	likely	to
be	independent,	and	thus	we	find	the	pair	of	concepts	more	interesting.	More
specifically,	the	CDF	of	the	one-degree	chi-squared	distribution	yields	a	p-
value	that	is	the	level	of	confidence	with	which	we	can	reject	the	null
hypothesis	that	the	variables	are	independent.

In	this	section,	we’ll	compute	the	value	of	the	chi-squared	statistic	for	each	pair
of	concepts	in	our	co-occurrence	graph	using	GraphX.

http://bit.ly/2qKl0RM


Processing	EdgeTriplets
The	easiest	part	of	the	chi-squared	statistic	to	count	is	T,	which	is	the	total
number	of	documents	under	consideration.	We	can	get	this	easily	by	simply
counting	the	number	of	entries	in	the	medline	RDD:

val	T	=	medline.count()

It’s	also	relatively	easy	for	us	to	get	the	counts	of	how	many	documents	feature
each	concept.	We	already	did	this	analysis	to	create	the	topicDist	DataFrame
earlier	in	this	chapter,	but	now	we’ll	get	the	hashed	versions	of	the	topic	and
their	counts	as	an	RDD:

val	topicDistRdd	=	topicDist.map{

		case	Row(topic:	String,	cnt:	Long)	=>	(hashId(topic),	cnt)

}.rdd

Once	we	have	this	VertexRDD	of	counts,	we	can	create	a	new	graph	using	it	as
the	vertex	set,	along	with	the	existing	edges	RDD:

val	topicDistGraph	=	Graph(topicDistRdd,	topicGraph.edges)

Now	we	have	all	of	the	information	we	need	to	compute	the	chi-squared
statistic	for	each	edge	in	the	topicDistGraph.	To	do	the	calculation,	we	need	to
combine	data	that	is	stored	at	both	the	vertices	(i.e.,	the	count	of	how	often	each
concept	appears	in	a	document)	as	well	as	the	edges	(i.e.,	the	count	of	how
often	each	pair	of	concepts	occurs	in	the	same	document).	GraphX	supports
this	kind	of	computation	via	a	data	structure	called	an	EdgeTriplet[VD,ED],
which	has	information	about	the	attributes	of	both	the	vertices	and	the	edges
contained	within	a	single	object,	as	well	as	the	IDs	of	both	of	the	vertices.
Given	an	EdgeTriplet	over	our	topicDistGraph,	we	can	calculate	the	chi-
squared	statistic	as	follows:

def	chiSq(YY:	Long,	YB:	Long,	YA:	Long,	T:	Long):	Double	=	{

		val	NB	=	T	-	YB

		val	NA	=	T	-	YA

		val	YN	=	YA	-	YY

		val	NY	=	YB	-	YY

		val	NN	=	T	-	NY	-	YN	-	YY



		val	inner	=	math.abs(YY	*	NN	-	YN	*	NY)	-	T	/	2.0

		T	*	math.pow(inner,	2)	/	(YA	*	NA	*	YB	*	NB)

}

We	can	then	apply	this	method	to	transform	the	value	of	the	graph	edges	via	the
mapTriplets	operator,	which	returns	a	new	graph	whose	edge	attributes	will	be
the	value	of	the	chi-squared	statistic	for	each	co-occurrence	pair,	and	then	get
an	idea	of	the	distribution	of	the	values	for	this	statistic	across	the	edges:

val	chiSquaredGraph	=	topicDistGraph.mapTriplets(triplet	=>	{

		chiSq(triplet.attr,	triplet.srcAttr,	triplet.dstAttr,	T)

})

chiSquaredGraph.edges.map(x	=>	x.attr).stats()

...

(count:	213745,	mean:	877.96,

	stdev:	5094.94,	max:	198668.41,

	min:	0.0)

Having	calculated	the	chi-squared	statistic	value,	we	want	to	use	it	to	filter	out
edges	that	don’t	appear	to	have	any	meaningful	relationship	between	the	co-
occurring	concepts.	As	we	can	see	from	the	distribution	of	the	edge	values,
there	is	an	enormous	range	of	values	for	the	chi-squared	statistic	across	the
data,	which	should	make	us	feel	comfortable	experimenting	with	an	aggressive
filtering	criterion	to	eliminate	noisy	edges.	For	a	2×2	contingency	table	in
which	there	is	no	relationship	between	the	variables,	we	expect	that	the	value	of
the	chi-squared	metric	will	follow	the	chi-squared	distribution	with	one	degree
of	freedom.	The	99.999th	percentile	of	the	chi-squared	distribution	with	one
degree	of	freedom	is	approximately	19.5,	so	let’s	try	this	value	as	a	cutoff	to
eliminate	edges	from	the	graph,	leaving	us	with	only	those	edges	where	we	are
extremely	confident	that	they	represent	an	interesting	co-occurrence
relationship.	We’ll	perform	this	filtering	on	the	graph	with	the	subgraph
method,	which	takes	a	boolean	function	of	an	EdgeTriplet	to	determine	which
edges	to	include	in	the	subgraph:

val	interesting	=	chiSquaredGraph.subgraph(

		triplet	=>	triplet.attr	>	19.5)

interesting.edges.count

...

140575

Our	extremely	strict	filtering	rule	removed	about	one	third	of	the	edges	in	the
original	co-occurrence	graph.	It	isn’t	a	bad	thing	that	the	rule	didn’t	remove



more	of	the	edges	because	we	expect	that	most	of	the	co-occurring	concepts	in
the	graph	are	actually	semantically	related	to	one	another,	so	they	would	co-
occur	more	often	than	they	would	simply	by	chance.	In	the	next	section,	we’ll
analyze	the	connectedness	and	overall	degree	distribution	of	the	subgraph,	to
see	if	there	was	any	major	impact	to	the	structure	of	the	graph	when	we
removed	the	noisy	edges.



Analyzing	the	Filtered	Graph
We’ll	start	by	rerunning	the	connected	component	algorithm	on	the	subgraph
and	checking	the	component	counts	and	sizes,	using	the	function	we	wrote
earlier	for	the	original	graph:

val	interestingComponentGraph	=	interesting.connectedComponents()

val	icDF	=	interestingComponentGraph.vertices.toDF("vid",	"cid")

val	icCountDF	=	icDF.groupBy("cid").count()

icCountDF.count()

...

878

icCountDF.orderBy(desc("count")).show()

...

+--------------------+-----+

|																	cid|count|

+--------------------+-----+

|-9218306090261648869|13610|

|-8193948242717911820|				5|

|-2062883918534425492|				4|

|-7016546051037489808|				3|

|-7685954109876710390|				3|

|	-784187332742198415|				3|

|	1765411469112156596|				3|

|	2742772755763603550|				3|

|-8679136035911620397|				3|

Filtering	out	a	third	of	the	edges	in	the	graph	had	no	impact	on	the
connectedness	of	the	overall	graph,	nor	did	it	change	the	size	of	the	largest
connected	component;	removing	the	“uninteresting”	edges	in	the	graph	left	the
overall	connectedness	of	the	topic	graph	intact.	When	we	look	at	the	degree
distribution	for	the	filtered	graph,	we	see	a	similar	story:

val	interestingDegrees	=	interesting.degrees.cache()

interestingDegrees.map(_._2).stats()

...

(count:	13721,	mean:	20.49,

	stdev:	29.86,	max:	863.0,	min:	1.0)

The	mean	degree	for	the	original	graph	was	about	43,	and	the	mean	degree	for
the	filtered	graph	has	fallen	a	bit,	to	about	28.	More	interesting,	however,	is	the
precipitous	drop	in	the	size	of	the	largest	degree	vertex,	which	has	fallen	from
3,753	in	the	original	graph	to	1,603	in	the	filtered	graph.	If	we	look	at	the
association	between	concept	and	degree	in	the	filtered	graph,	we	see	this:

interestingDegrees.innerJoin(topicGraph.vertices)	{



		(topicId,	degree,	name)	=>	(name,	degree)

}.values.toDF("topic",	"degree").orderBy(desc("degree")).show()

...

+--------------------+------+

|															topic|degree|

+--------------------+------+

|												Research|			863|

|													Disease|			637|

|								Pharmacology|			509|

|											Neoplasms|			453|

|										Toxicology|			381|

|										Metabolism|			321|

|								Drug	Therapy|			304|

|															Blood|			302|

|							Public	Policy|			279|

|							Social	Change|			277|

...

Our	chi-squared	filtering	criterion	appears	to	have	the	desired	effect:	it’s
eliminating	edges	in	our	graph	related	to	generic	concepts,	while	preserving
the	edges	in	the	rest	of	the	graph	that	represent	meaningful	and	interesting
semantic	relationships	between	concepts.	We	can	continue	to	experiment	with
different	chi-squared	filtering	criteria	to	see	how	it	impacts	the	connectedness
and	degree	distribution	in	the	graph;	it	would	be	interesting	to	find	out	what
value	of	the	chi-squared	distribution	would	cause	the	large	connected
component	in	the	graph	to	break	up	into	smaller	pieces,	or	if	the	largest
component	would	simply	continue	to	“melt,”	like	a	giant	iceberg	slowly	losing
tiny	pieces	over	time.



Small-World	Networks
The	connectedness	and	degree	distribution	of	a	graph	can	give	us	a	basic	idea
of	its	overall	structure,	and	GraphX	makes	it	easy	to	calculate	and	analyze
these	properties.	In	this	section,	we’ll	go	a	bit	deeper	into	the	GraphX	APIs	and
show	how	we	can	use	them	to	calculate	some	more	advanced	properties	of	a
graph	that	do	not	have	built-in	support	in	GraphX.

With	the	rise	of	computer	networks	like	the	web	and	social	networks	like
Facebook	and	Twitter,	data	scientists	now	have	rich	data	sets	that	describe	the
structure	and	formation	of	real-world	networks	versus	the	idealized	networks
that	mathematicians	and	graph	theorists	have	traditionally	studied.	One	of	the
first	papers	to	describe	the	properties	of	these	real-world	networks	and	how
they	differed	from	the	idealized	models	was	published	in	1998	by	Duncan
Watts	and	Steven	Strogatz	and	was	titled	“Collective	Dynamics	of	‘Small-
World’	Networks”.	It	was	a	seminal	paper	that	outlined	the	first	mathematical
model	for	how	to	generate	graphs	that	exhibited	the	two	“small-world”
properties	that	we	see	in	real-world	graphs:

Most	of	the	nodes	in	the	network	have	a	small	degree	and	belong	to	a
relatively	dense	cluster	of	other	nodes;	that	is,	a	high	fraction	of	a	node’s
neighbors	are	also	connected	to	each	other.

Despite	the	small	degree	and	dense	clustering	of	most	nodes	in	the	graph,
it	is	possible	to	reach	any	node	in	the	network	from	any	other	network
relatively	quickly	by	traversing	a	small	number	of	edges.

For	each	of	these	properties,	Watts	and	Strogatz	defined	a	metric	that	could	be
used	to	rank	graphs	based	on	how	strongly	they	expressed	these	properties.	In
this	section,	we	will	use	GraphX	to	compute	these	metrics	for	our	concept
network,	and	compare	the	values	we	get	to	the	values	we	would	get	for	an
idealized	random	graph	in	order	to	test	whether	our	concept	network	exhibits
the	small-world	property.

http://bit.ly/2pshNFH


Cliques	and	Clustering	Coefficients
A	graph	is	complete	if	every	vertex	is	connected	to	every	other	vertex	by	an
edge.	In	a	given	graph,	there	may	be	many	subsets	of	vertices	that	are
complete,	and	we	call	these	complete	subgraphs	cliques.	The	presence	of	many
large	cliques	in	a	graph	indicates	that	the	graph	has	the	kind	of	locally	dense
structure	that	we	see	in	real	small-world	networks.

Unfortunately,	finding	cliques	in	a	given	graph	turns	out	to	be	very	difficult	to
do.	The	problem	of	detecting	whether	or	not	a	given	graph	has	a	clique	of	a
given	size	is	NP-complete,	which	means	that	finding	cliques	in	even	small
graphs	can	be	computationally	intensive.

Computer	scientists	have	developed	a	number	of	simple	metrics	that	give	us	a
good	feel	for	the	local	density	of	a	graph	without	the	computational	costs	of
finding	all	of	the	cliques	of	a	given	size.	One	of	these	metrics	is	the	triangle
count	at	a	vertex.	A	triangle	is	a	complete	graph	on	three	vertices,	and	the
triangle	count	at	a	vertex	V	is	simply	the	number	of	triangles	that	contain	V.
The	triangle	count	is	a	measure	of	how	many	neighbors	of	V	are	also
connected	to	each	other.	Watts	and	Strogatz	defined	a	new	metric,	called	the
local	clustering	coefficient,	that	is	the	ratio	of	the	actual	triangle	count	at	a
vertex	to	the	number	of	possible	triangles	at	that	vertex	based	on	how	many
neighbors	it	has.	For	an	undirected	graph,	the	local	clustering	coefficient	C	for
a	vertex	that	has	k	neighbors	and	t	triangles	is:

Let’s	use	GraphX	to	compute	the	local	clustering	coefficients	for	each	node	in
the	filtered	concept	network.	GraphX	has	a	built-in	method	called
triangleCount	that	returns	a	Graph	whose	VertexRDD	contains	the	number	of
triangles	at	each	vertex:

val	triCountGraph	=	interesting.triangleCount()

triCountGraph.vertices.map(x	=>	x._2).stats()

...

(count:	14548,	mean:	74.66,	stdev:	295.33,	max:	11023.0,	min:	0.0)



To	compute	the	local	clustering	coefficient,	we’ll	need	to	normalize	these
triangle	counts	by	the	total	number	of	possible	triangles	at	each	vertex,	which
we	can	compute	from	the	interestingDegrees	RDD:

val	maxTrisGraph	=	interestingDegrees.mapValues(d	=>	d	*	(d	-	1)	/	2.0)

Now	we’ll	join	the	VertexRDD	of	triangle	counts	from	triCountGraph	to	the
VertexRDD	of	normalization	terms	we	calculated	and	compute	the	ratio	of	the
two,	being	careful	to	avoid	dividing	by	zero	for	any	vertices	that	only	have	a
single	edge:

val	clusterCoef	=	triCountGraph.vertices.

		innerJoin(maxTrisGraph)	{	(vertexId,	triCount,	maxTris)	=>	{

				if	(maxTris	==	0)	0	else	triCount	/	maxTris

		}

}

Computing	the	average	value	of	the	local	clustering	coefficient	for	all	of	the
vertices	in	the	graph	gives	us	the	network	average	clustering	coefficient:

clusterCoef.map(_._2).sum()	/	interesting.vertices.count()

...

0.30624625605188605



Computing	Average	Path	Length	with	Pregel
The	second	property	of	small-world	networks	is	that	the	length	of	the	shortest
path	between	any	two	randomly	chosen	nodes	tends	to	be	small.	In	this	section,
we’ll	compute	the	average	path	length	for	nodes	contained	in	the	large
connected	component	of	our	filtered	graph.

Computing	the	path	length	between	vertices	in	a	graph	is	an	iterative	process
that	is	similar	to	the	iterative	process	we	use	to	find	the	connected	components.
At	each	phase	of	the	process,	each	vertex	will	maintain	a	collection	of	the
vertices	that	it	knows	about	and	how	far	away	each	vertex	is.	Each	vertex	will
then	query	its	neighbors	about	the	contents	of	their	lists,	and	it	will	update	its
own	list	with	any	new	vertices	that	are	contained	in	its	neighbors’	lists	that
were	not	contained	in	its	own	list.	This	process	of	querying	neighbors	and
updating	lists	will	continue	across	the	entire	graph	until	none	of	the	vertices
are	able	to	add	any	new	information	to	their	lists.

This	iterative,	vertex-centric	method	of	parallel	programming	on	large,
distributed	graphs	is	based	on	a	paper	that	Google	published	in	2009	called
“Pregel:	a	system	for	large-scale	graph	processing”.	Pregel	is	based	on	a
model	of	distributed	computation	that	predates	MapReduce	called	bulk-
synchronous	parallel	(BSP).	BSP	programs	divide	parallel	processing	stages
into	two	phases:	computation	and	communication.	During	the	computation
phase,	each	vertex	in	the	graph	examines	its	own	internal	state	and	decides	to
send	zero	or	more	messages	to	other	vertices	in	the	graph.	During	the
communication	phase,	the	Pregel	framework	handles	routing	the	messages	that
resulted	from	the	previous	communication	phase	to	the	appropriate	vertices,
which	then	process	those	messages,	updates	their	internal	state,	and	potentially
generates	new	messages	during	the	next	computation	phase.	The	sequence	of
computation	and	communication	steps	continues	until	all	of	the	vertices	in	the
graph	vote	to	halt,	at	which	point	the	computation	is	finished.

BSP	was	one	of	the	first	parallel	programming	frameworks	that	was	both
fairly	general	purpose	as	well	as	fault	tolerant:	it	was	possible	to	design	BSP
systems	in	such	a	way	that	the	state	of	the	system	at	any	computation	phase
could	be	captured	and	stored	so	that	if	a	particular	machine	failed,	the	state	of
that	machine	could	be	replicated	on	another	machine,	the	overall	computation

http://bit.ly/2qKTfbL


could	be	rolled	back	to	the	earlier	state	before	the	failure	occurred,	and	then
the	computation	could	continue.

Since	Google	published	its	paper	on	Pregel,	a	number	of	open	source	projects
have	been	developed	that	replicate	aspects	of	the	BSP	programming	model	on
top	of	HDFS,	such	as	Apache	Giraph	and	Apache	Hama.	These	systems	have
proven	very	useful	for	specialized	problems	that	fit	nicely	into	the	BSP
computational	model,	such	as	large-scale	PageRank	computations,	but	they	are
not	widely	deployed	as	part	of	the	analysis	toolkit	for	regular	data	scientists
because	it	is	relatively	difficult	to	integrate	them	into	a	standard	data-parallel
workflow.	GraphX	solves	this	problem	by	allowing	data	scientists	to	easily
bring	graphs	into	a	data-parallel	workflow	when	it	is	convenient	for
representing	data	and	implementing	algorithms,	and	it	provides	a	built-in
pregel	operator	for	expressing	BSP	computations	on	top	of	graphs.

In	this	section,	we’ll	demonstrate	how	to	use	this	operator	to	implement	the
iterative,	graph-parallel	computations	we	need	to	compute	the	average	path
length	for	a	graph:

1.	 Figure	out	what	state	we	need	to	keep	track	of	at	each	vertex.

2.	 Write	a	function	that	takes	the	current	state	into	account	and	evaluates
each	pair	of	linked	vertices	to	determine	which	messages	to	send	at	the
next	phase.

3.	 Write	a	function	that	merges	the	messages	from	all	of	the	different
vertices	before	we	pass	the	output	of	the	function	to	the	vertex	for
updating.

There	are	three	major	decisions	we	need	to	make	in	order	to	implement	a
distributed	algorithm	using	Pregel.	First,	we	need	to	decide	what	data	structure
we’re	going	to	use	to	represent	the	state	of	each	vertex,	and	what	data	structure
we’re	going	to	use	to	represent	the	messages	passed	between	vertices.	For	the
average	path	length	problem,	we	want	each	vertex	to	have	a	lookup	table	that
contains	the	IDs	of	the	vertices	it	currently	knows	about	and	how	far	away
from	those	vertices	it	is.	We’ll	store	this	information	inside	of	a
Map[VertexId,	Int]	that	we	maintain	for	each	vertex.	Similarly,	the	messages
that	are	passed	to	each	vertex	should	be	a	lookup	table	of	vertex	IDs	and



distances	that	are	based	on	information	that	the	vertex	receives	from	its
neighbors,	and	we	can	use	a	Map[VertexId,	Int]	to	represent	this	information
as	well.

Once	we	know	the	data	structures	that	we’ll	use	for	representing	the	state	of	the
vertices	and	the	content	of	the	messages,	we	need	to	write	two	functions.	The
first	one,	which	we’ll	call	mergeMaps,	is	used	to	merge	the	information	from
the	new	messages	into	the	state	of	the	vertex.	In	this	case,	both	the	state	and	the
message	are	of	type	Map[VertexId,	Int],	so	we	need	to	merge	the	contents	of
these	two	maps	while	retaining	the	smallest	value	associated	with	any	VertexId
entries	that	occur	in	both	maps:

def	mergeMaps(m1:	Map[VertexId,	Int],	m2:	Map[VertexId,	Int])

		:	Map[VertexId,	Int]	=	{

		def	minThatExists(k:	VertexId):	Int	=	{

				math.min(

						m1.getOrElse(k,	Int.MaxValue),

						m2.getOrElse(k,	Int.MaxValue))

		}

		(m1.keySet	++	m2.keySet).map	{

				k	=>	(k,	minThatExists(k))

		}.toMap

}

The	vertex	update	function	also	includes	the	VertexId	value	as	an	argument,	so
we’ll	define	a	trivial	update	function	that	takes	the	VertexId	along	with	the
Map[VertexId,	Int]	arguments,	but	delegates	all	of	the	actual	work	to
mergeMaps:

def	update(

				id:	VertexId,

				state:	Map[VertexId,	Int],

				msg:	Map[VertexId,	Int])	=	{

		mergeMaps(state,	msg)

}

Because	the	messages	we	will	pass	during	the	algorithm	are	also	of	type
Map[VertexId,	Int],	and	we	want	to	merge	them	and	keep	the	minimal	value
of	each	key	they	possess,	we	will	be	able	to	use	the	mergeMaps	function	for	the
reduce	phase	of	the	Pregel	run	as	well.

The	final	step	is	usually	the	most	involved:	we	need	to	write	the	code	that
constructs	the	message	that	will	be	sent	to	each	vertex	based	on	the	information



it	receives	from	its	neighbors	at	each	iteration.	The	basic	idea	here	is	that	each
vertex	should	increment	the	value	of	each	key	in	its	current	Map[VertexId,
Int]	by	one,	combine	the	incremented	map	values	with	the	values	from	its
neighbor	using	the	mergeMaps	method,	and	send	the	result	of	the	mergeMaps
function	to	the	neighboring	vertex	if	it	differs	from	the	neighbor ’s	internal
Map[VertexId,	Int].	The	code	for	performing	this	sequence	of	operations
looks	like	this:

def	checkIncrement(

				a:	Map[VertexId,	Int],

				b:	Map[VertexId,	Int],

				bid:	VertexId)	=	{

		val	aplus	=	a.map	{	case	(v,	d)	=>	v	->	(d	+	1)	}

		if	(b	!=	mergeMaps(aplus,	b))	{

				Iterator((bid,	aplus))

		}	else	{

				Iterator.empty

		}

}

With	the	checkIncrement	function	in	hand,	we	can	define	the	iterate	function
that	we	will	use	for	performing	the	message	updates	at	each	Pregel	iteration
for	both	the	src	and	dst	vertices	inside	of	an	EdgeTriplet:

def	iterate(e:	EdgeTriplet[Map[VertexId,	Int],	_])	=	{

		checkIncrement(e.srcAttr,	e.dstAttr,	e.dstId)	++

		checkIncrement(e.dstAttr,	e.srcAttr,	e.srcId)

}

During	each	iteration,	we	need	to	determine	the	path	lengths	that	need	to	be
communicated	to	each	of	the	vertices	based	on	the	path	lengths	that	they
already	know	about,	and	then	we	need	to	return	an	Iterator	that	contains	a
tuple	of	(VertexId,	Map[VertexId,	Int]),	where	the	first	VertexId	indicates
where	the	message	should	be	routed	and	the	Map[VertexId,	Int]	is	the
message	itself.

If	a	vertex	does	not	receive	any	messages	during	an	iteration,	the	pregel
operator	assumes	that	this	vertex	is	finished	computing,	and	it	will	be	excluded
from	subsequent	processing.	As	soon	as	no	more	messages	are	sent	to	any
vertex	from	the	iterate	method,	the	algorithm	is	complete.



The	implementation	of	the	pregel	operator	in	GraphX	has	a	limitation	compared	to	BSP
systems	like	Giraph:	GraphX	can	only	send	messages	between	vertices	that	are	connected	by
an	edge,	whereas	Giraph	can	send	messages	between	any	two	vertices	in	a	graph.

Now	that	our	functions	are	complete,	let’s	prepare	the	data	for	the	BSP	run.
Given	a	large	enough	cluster	and	plenty	of	memory,	we	could	compute	the
path	lengths	between	every	pair	of	vertices	using	a	Pregel-style	algorithm	with
GraphX.	However,	this	isn’t	necessary	for	us	to	get	an	idea	of	the	general
distribution	of	path	lengths	in	the	graph;	instead,	we	can	randomly	sample	a
small	subset	of	the	vertices	and	then	compute	the	path	lengths	for	each	vertex
to	just	that	subset.	Using	the	RDD	sample	method,	let’s	select	2%	of	the
VertexId	values	for	our	sample	without	replacement,	using	the	value	1729L	as
the	seed	for	the	random	number	generator:

val	fraction	=	0.02

val	replacement	=	false

val	sample	=	interesting.vertices.map(v	=>	v._1).

		sample(replacement,	fraction,	1729L)

val	ids	=	sample.collect().toSet

Now	we’ll	create	a	new	Graph	object	whose	vertex	Map[VertexId,	Int]	values
are	only	nonempty	if	the	vertex	is	a	member	of	the	sampled	IDs:

val	mapGraph	=	interesting.mapVertices((id,	_)	=>	{

		if	(ids.contains(id))	{

				Map(id	->	0)

		}	else	{

				Map[VertexId,	Int]()

		}

})

Finally,	to	kick	off	the	run,	we	need	an	initial	message	to	send	to	the	vertices.
For	this	algorithm,	that	initial	message	is	an	empty	Map[VertexId,	Int].	We
can	then	call	the	pregel	method,	followed	by	the	update,	iterate,	and
mergeMaps	functions	to	execute	during	each	iteration:

val	start	=	Map[VertexId,	Int]()

val	res	=	mapGraph.pregel(start)(update,	iterate,	mergeMaps)

This	should	run	for	a	few	minutes;	the	number	of	iterations	of	the	algorithm
will	be	one	plus	the	length	of	the	longest	path	in	our	sample.	Once	it	completes,



we	can	flatMap	the	vertices	to	extract	the	tuples	of	(VertexId,	VertexId,
Int)	values	that	represent	the	unique	path	lengths	that	were	computed:

val	paths	=	res.vertices.flatMap	{	case	(id,	m)	=>

		m.map	{	case	(k,	v)	=>

				if	(id	<	k)	{

						(id,	k,	v)

				}	else	{

						(k,	id,	v)

				}

		}

}.distinct()

paths.cache()

We	can	now	compute	summary	statistics	for	the	nonzero	path	lengths	and
compute	the	histogram	of	path	lengths	in	our	sample:

paths.map(_._3).filter(_	>	0).stats()

...

(count:	3197372,	mean:	3.63,	stdev:	0.78,	max:	8.0,	min:	1.0)

val	hist	=	paths.map(_._3).countByValue()

hist.toSeq.sorted.foreach(println)

...

(0,255)

(1,4336)

(2,159813)

(3,1238373)

(4,1433353)

(5,335461)

(6,24961)

(7,1052)

(8,23)

The	average	path	length	of	our	sample	was	3.63,	while	the	clustering
coefficient	that	we	calculated	in	the	last	section	was	0.306.	Table	7-1	shows	the
values	of	these	statistics	for	three	different	small-world	networks	as	well	as	for
random	graphs	that	were	generated	on	the	same	number	of	vertices	and	edges
as	each	of	the	real-world	networks,	and	is	taken	from	a	paper	titled	“Multiscale
Visualization	of	Small	World	Networks”	by	Auber	et	al.	(2003).

Table	7-1.	Example	small-world	networks

Graph Avg	path	length	(APL) Clustering	coefficient	(CC) Random	APL Random	CC

IMDB 3.20 0.967 2.67 0.024

macOS	9 3.28 0.388 3.32 0.018

https://dl.acm.org/citation.cfm?id=1947385


.edu	sites 4.06 0.156 4.048 0.001

The	IMDB	graph	was	built	from	actors	who	had	appeared	in	the	same	movies
—	the	macOS	9	network	referred	to	header	files	that	were	likely	coincluded	in
the	same	source	files	in	the	OS	9	source	code,	and	.edu	sites	refer	to	sites	in	the
.edu	top-level	domain	that	linked	to	one	another	and	are	drawn	from	a	paper	by
Adamic	(1999).	Our	analysis	shows	that	the	network	of	MeSH	tags	in	the
MEDLINE	citation	index	fits	naturally	into	the	same	range	of	average	path
length	and	clustering	coefficient	values	that	we	see	in	other	well-known	small-
world	networks,	with	a	much	higher	clustering	coefficient	value	than	we	would
expect	given	the	relatively	low	average	path	length.

https://bit.ly/1wuHgfB


Where	to	Go	from	Here
At	first,	small-world	networks	were	a	curiosity;	it	was	interesting	that	so	many
different	types	of	real-world	networks,	from	sociology	and	political	science	to
neuroscience	and	cell	biology,	had	such	similar	and	peculiar	structural
properties.	More	recently,	however,	it	seems	that	deviances	from	small-world
structure	in	these	networks	can	be	indicative	of	the	potential	for	functional
problems.	Dr.	Jeffrey	Petrella	at	Duke	University	gathered	research	that
indicates	that	the	network	of	neurons	in	the	brain	exhibits	a	small-world
structure,	and	that	deviance	from	this	structure	occurs	in	patients	who	have
been	diagnosed	with	Alzheimer ’s	disease,	schizophrenia,	depression,	and
attention-deficit	disorders.	In	general,	real-world	graphs	should	exhibit	the
small-world	property;	if	they	do	not,	that	may	be	evidence	of	a	problem,	such
as	fraudulent	activity	in	a	small-world	graph	of	transactions	or	trust
relationships	between	businesses.

https://bit.ly/1wuHi7f


Chapter	8.	Geospatial	and	Temporal
Data	Analysis	on	New	York	City
Taxi	Trip	Data
Josh	Wills

Nothing	puzzles	me	more	than	time	and	space;	and	yet	nothing	troubles	me
less,	as	I	never	think	about	them.
Charles	Lamb

New	York	City	is	widely	known	for	its	yellow	taxis,	and	hailing	one	is	just	as
much	a	part	of	the	experience	of	visiting	the	city	as	eating	a	hot	dog	from	a
street	vendor	or	riding	the	elevator	to	the	top	of	the	Empire	State	Building.

Residents	of	New	York	City	have	all	kinds	of	tips	based	on	their	anecdotal
experiences	about	the	best	times	and	places	to	catch	a	cab,	especially	during
rush	hour	and	when	it’s	raining.	But	there	is	one	time	of	day	when	everyone
will	recommend	that	you	simply	take	the	subway	instead:	during	the	shift
change	that	happens	between	4	and	5PM	every	day.	During	this	time,	yellow
taxis	have	to	return	to	their	dispatch	centers	(often	in	Queens)	so	that	one
driver	can	quit	for	the	day	and	the	next	one	can	start,	and	drivers	who	are	late
to	return	have	to	pay	fines.

In	March	of	2014,	the	New	York	City	Taxi	and	Limousine	Commission	shared
an	infographic	on	its	Twitter	account,	@nyctaxi,	that	showed	the	number	of
taxis	on	the	road	and	the	fraction	of	those	taxis	that	was	occupied	at	any	given
time.	Sure	enough,	there	was	a	noticeable	dip	of	taxis	on	the	road	from	4	to
6PM,	and	two-thirds	of	the	taxis	that	were	driving	were	occupied.

This	tweet	caught	the	eye	of	self-described	urbanist,	mapmaker,	and	data	junkie
Chris	Whong,	who	sent	a	tweet	to	the	@nyctaxi	account	to	find	out	if	the	data	it
used	in	its	infographic	was	publicly	available.	The	taxi	commission	replied	that
he	could	have	the	data	if	he	filed	a	Freedom	of	Information	Law	(FOIL)
request	and	provided	the	commission	with	hard	drives	that	they	could	copy	the
data	on	to.	After	filling	out	one	PDF	form,	buying	two	new	500	GB	hard

https://twitter.com/nyctaxi


drives,	and	waiting	two	business	days,	Chris	had	access	to	all	of	the	data	on
taxi	rides	from	January	1	through	December	31,	2013.	Even	better,	he	posted
all	of	the	fare	data	online,	where	it	has	been	used	as	the	basis	for	a	number	of
beautiful	visualizations	of	transportation	in	New	York	City.

One	statistic	that	is	important	to	understanding	the	economics	of	taxis	is
utilization:	the	fraction	of	time	that	a	cab	is	on	the	road	and	is	occupied	by	one
or	more	passengers.	One	factor	that	impacts	utilization	is	the	passenger ’s
destination:	a	cab	that	drops	off	passengers	near	Union	Square	at	midday	is
much	more	likely	to	find	its	next	fare	in	just	a	minute	or	two,	whereas	a	cab
that	drops	someone	off	at	2AM	on	Staten	Island	may	have	to	drive	all	the	way
back	to	Manhattan	before	it	finds	its	next	fare.	We’d	like	to	quantify	these
effects	and	find	out	the	average	time	it	takes	for	a	cab	to	find	its	next	fare	as	a
function	of	the	borough	in	which	it	dropped	its	passengers	off	—	Manhattan,
Brooklyn,	Queens,	the	Bronx,	Staten	Island,	or	none	of	the	above	(e.g.,	if	it
dropped	the	passenger	off	somewhere	outside	of	the	city,	like	Newark
International	Airport).

To	carry	out	this	analysis,	we	need	to	deal	with	two	types	of	data	that	come	up
all	the	time:	temporal	data,	such	as	dates	and	times,	and	geospatial	information,
like	points	of	longitude	and	latitude	and	spatial	boundaries.	Since	the	first
edition	of	this	book	was	released,	there	have	been	a	number	of	improvements
in	the	ways	that	we	can	work	with	temporal	data	in	Spark,	such	as	the	new
java.time	package	that	was	released	in	Java	8	and	the	incorporation	of	UDFs
from	the	Apache	Hive	project	in	SparkSQL;	these	include	many	functions	that
deal	with	time,	like	date_add	and	from_timestamp,	which	make	it	much	easier
to	work	with	time	in	Spark	2	than	it	was	in	Spark	1.	Geospatial	data,	on	the
other	hand,	is	still	a	fairly	specialized	kind	of	analysis,	and	we	will	need	to
work	with	third-party	libraries	and	write	our	own	custom	UDFs	in	order	to	be
able	to	effectively	work	with	this	data	inside	Spark.



Getting	the	Data
For	this	analysis,	we’re	only	going	to	consider	the	fare	data	from	January
2013,	which	will	be	about	2.5	GB	of	data	after	we	uncompress	it.	You	can
access	the	data	for	each	month	of	2013,	and	if	you	have	a	sufficiently	large
Spark	cluster	at	your	disposal,	you	can	re-create	the	following	analysis	against
all	of	the	data	for	the	year.	For	now,	let’s	create	a	working	directory	on	our
client	machine	and	take	a	look	at	the	structure	of	the	fare	data:

$	mkdir	taxidata

$	cd	taxidata

$	curl	-O	https://nyctaxitrips.blob.core.windows.net/data/trip_data_1.csv.zip

$	unzip	trip_data_1.csv.zip

$	head	-n	10	trip_data_1.csv

Each	row	of	the	file	after	the	header	represents	a	single	taxi	ride	in	CSV
format.	For	each	ride,	we	have	some	attributes	of	the	cab	(a	hashed	version	of
the	medallion	number)	as	well	as	the	driver	(a	hashed	version	of	the	hack
license,	which	is	what	licenses	to	drive	taxis	are	called),	some	temporal
information	about	when	the	trip	started	and	ended,	and	the	longitude/latitude
coordinates	for	where	the	passenger(s)	were	picked	up	and	dropped	off.

http://www.andresmh.com/nyctaxitrips/


Working	with	Third-Party	Libraries	in	Spark
One	of	the	great	features	of	the	Java	platform	is	the	sheer	volume	of	code	that
has	been	developed	for	it	over	the	years:	for	any	kind	of	data	type	or	algorithm
you	might	need	to	use,	it’s	likely	that	someone	else	has	written	a	Java	library
that	you	can	use	to	solve	your	problem,	and	there’s	also	a	good	chance	that	an
open	source	version	of	that	library	exists	that	you	can	download	and	use
without	having	to	purchase	a	license.

Of	course,	just	because	a	library	exists	and	is	freely	available	doesn’t	mean
you	necessarily	want	to	rely	on	it	to	solve	your	problem.	Open	source	projects
have	a	lot	of	variation	in	terms	of	their	quality,	state	of	development	in	terms
of	bug	fixes	and	new	features,	and	ease-of-use	in	terms	of	API	design	and	the
presence	of	useful	documentation	and	tutorials.

Our	decision-making	process	is	a	bit	different	than	that	of	a	developer
choosing	a	library	for	an	application;	we	want	something	that	will	be	pleasant
to	use	for	interactive	data	analysis	and	that	is	easy	to	use	in	a	distributed
application.	In	particular,	we	want	to	be	sure	that	the	main	data	types	we	will	be
working	with	in	our	RDDs	implement	the	Serializable	interface	and/or	can
be	easily	serialized	using	libraries	like	Kryo.

Additionally,	we	would	like	the	libraries	we	use	for	interactive	data	analysis	to
have	as	few	external	dependencies	as	possible.	Tools	like	Maven	and	SBT	can
help	application	developers	deal	with	complex	dependencies	when	building
applications,	but	for	interactive	data	analysis,	we	would	much	rather	simply
grab	a	JAR	file	with	all	of	the	code	we	need,	load	it	into	the	Spark	shell,	and
start	our	analysis.	Additionally,	bringing	in	libraries	with	lots	of	dependencies
can	cause	version	conflicts	with	other	libraries	that	Spark	depends	on,	which
can	cause	difficult-to-diagnose	error	conditions	that	developers	refer	to	as	JAR
hell.

Finally,	we	would	like	our	libraries	to	have	relatively	simple	and	rich	APIs	that
do	not	make	extensive	use	of	Java-oriented	design	patterns	like	abstract
factories	and	visitors.	Although	these	patterns	can	be	very	useful	for
application	developers,	they	tend	to	add	a	lot	of	complexity	to	our	code	that	is
unrelated	to	our	analysis.	Even	better,	many	Java	libraries	have	Scala	wrappers



that	take	advantage	of	Scala’s	power	to	reduce	the	amount	of	boilerplate	code
required	to	use	them.



Geospatial	Data	with	the	Esri	Geometry	API	and
Spray
Working	with	temporal	data	on	the	JVM	has	become	significantly	easier	in
Java	8	thanks	to	the	java.time	package,	whose	design	is	based	on	the	highly
successful	JodaTime	library.	For	geospatial	data,	the	answer	isn’t	nearly	so
simple;	there	are	many	different	libraries	and	tools	that	have	different
functions,	states	of	development,	and	maturity	levels,	so	there	is	not	a	dominant
Java	library	for	all	geospatial	use	cases.

The	first	thing	you	must	consider	when	choosing	a	library	is	determine	what
kind	of	geospatial	data	you	will	need	to	work	with.	There	are	two	major	kinds
—	vector	and	raster	—	and	there	are	different	tools	for	working	with	each
type.	In	our	case,	we	have	latitude	and	longitude	for	our	taxi	trip	records,	and
vector	data	stored	in	the	GeoJSON	format	that	represents	the	boundaries	of	the
different	boroughs	of	New	York.	So	we	need	a	library	that	can	parse	GeoJSON
data	and	can	handle	spatial	relationships,	like	detecting	whether	a	given
longitude/latitude	pair	is	contained	inside	a	polygon	that	represents	the
boundaries	of	a	particular	borough.

Unfortunately,	there	isn’t	an	open	source	library	that	fits	our	needs	exactly.
There	is	a	GeoJSON	parser	library	that	can	convert	GeoJSON	records	into
Java	objects,	but	there	isn’t	an	associated	geospatial	library	that	can	analyze
spatial	relationships	on	the	generated	objects.	There	is	the	GeoTools	project,
but	it	has	a	long	list	of	components	and	dependencies	—	exactly	the	kind	of
thing	we	try	to	avoid	when	choosing	a	library	to	work	with	from	the	Spark
shell.	Finally,	there	is	the	Esri	Geometry	API	for	Java,	which	has	few
dependencies	and	can	analyze	spatial	relationships	but	can	only	parse	a	subset
of	the	GeoJSON	standard,	so	it	won’t	be	able	to	parse	the	GeoJSON	data	we
downloaded	without	us	doing	some	preliminary	data	munging.

For	a	data	analyst,	this	lack	of	tooling	might	be	an	insurmountable	problem.
But	we	are	data	scientists:	if	our	tools	don’t	allow	us	to	solve	a	problem,	we
build	new	tools.	In	this	case,	we	will	add	Scala	functionality	for	parsing	all	of
the	GeoJSON	data,	including	the	bits	that	aren’t	handled	by	the	Esri	Geometry
API,	by	leveraging	one	of	the	many	Scala	projects	that	support	parsing	JSON



data.	The	code	that	we	will	be	discussing	in	the	next	few	sections	is	available	in
the	book’s	Git	repo,	but	has	also	been	made	available	as	a	standalone	library
on	GitHub,	where	it	can	be	used	for	any	kind	of	geospatial	analysis	project	in
Scala.

https://github.com/jwills/geojson


Exploring	the	Esri	Geometry	API
The	core	data	type	of	the	Esri	library	is	the	Geometry	object.	A	Geometry
describes	a	shape,	accompanied	by	a	geolocation	where	that	shape	resides.	The
library	contains	a	set	of	spatial	operations	that	allows	analyzing	geometries
and	their	relationships.	These	operations	can	do	things	like	tell	us	the	area	of	a
geometry	and	whether	two	geometries	overlap,	or	compute	the	geometry
formed	by	the	union	of	two	geometries.

In	our	case,	we’ll	have	Geometry	objects	representing	dropoff	points	for	cab
rides	(longitude	and	latitude),	and	Geometry	objects	that	represent	the
boundaries	of	a	borough	in	NYC.	The	spatial	relationship	we’re	interested	in	is
containment:	is	a	given	point	in	space	located	inside	one	of	the	polygons
associated	with	a	borough	of	Manhattan?

The	Esri	API	provides	a	convenience	class	called	GeometryEngine	that	contains
static	methods	for	performing	all	of	the	spatial	relationship	operations,
including	a	contains	operation.	The	contains	method	takes	three	arguments:
two	Geometry	objects,	and	one	instance	of	the	SpatialReference	class,	which
represents	the	coordinate	system	used	to	perform	the	geospatial	calculations.
For	maximum	precision,	we	need	to	analyze	spatial	relationships	relative	to	a
coordinate	plane	that	maps	each	point	on	the	misshapen	spheroid	that	is	planet
Earth	into	a	2D	coordinate	system.	Geospatial	engineers	have	a	standard	set	of
well-known	identifiers	(referred	to	as	WKIDs)	that	can	be	used	to	reference	the
most	commonly	used	coordinate	systems.	For	our	purposes,	we	will	be	using
WKID	4326,	which	is	the	standard	coordinate	system	used	by	GPS.

As	Scala	developers,	we’re	always	on	the	lookout	for	ways	to	reduce	the
amount	of	typing	we	need	to	do	as	part	of	our	interactive	data	analysis	in	the
Spark	shell,	where	we	don’t	have	access	to	development	environments	like
Eclipse	and	IntelliJ	that	can	automatically	complete	long	method	names	for	us
and	provide	some	syntactic	sugar	to	make	it	easier	to	read	certain	kinds	of
operations.	Following	the	naming	convention	we	saw	in	the	NScalaTime
library,	which	defined	wrapper	classes	like	RichDateTime	and	RichDuration,
we’ll	define	our	own	RichGeometry	class	that	extends	the	Esri	Geometry	object
with	some	useful	helper	methods:



import	com.esri.core.geometry.Geometry

import	com.esri.core.geometry.GeometryEngine

import	com.esri.core.geometry.SpatialReference

class	RichGeometry(val	geometry:	Geometry,

				val	spatialReference:	SpatialReference	=

						SpatialReference.create(4326))	{

		def	area2D()	=	geometry.calculateArea2D()

		def	contains(other:	Geometry):	Boolean	=	{

				GeometryEngine.contains(geometry,	other,	spatialReference)

		}

		def	distance(other:	Geometry):	Double	=	{

				GeometryEngine.distance(geometry,	other,	spatialReference)

		}

}

We’ll	also	declare	a	companion	object	for	RichGeometry	that	provides	support
for	implicitly	converting	instances	of	the	Geometry	class	into	RichGeometry
instances:

object	RichGeometry	{

		implicit	def	wrapRichGeo(g:	Geometry)	=	{

				new	RichGeometry(g)

		}

}

Remember,	to	be	able	to	take	advantage	of	this	conversion,	we	need	to	import
the	implicit	function	definition	into	the	Scala	environment,	like	this:

import	RichGeometry._



Intro	to	GeoJSON
The	data	we’ll	use	for	the	boundaries	of	boroughs	in	New	York	City	comes
written	in	a	format	called	GeoJSON.	The	core	object	in	GeoJSON	is	called	a
feature,	which	is	made	up	of	a	geometry	instance	and	a	set	of	key-value	pairs
called	properties.	A	geometry	is	a	shape	like	a	point,	line,	or	polygon.	A	set	of
features	is	called	a	FeatureCollection.	Let’s	pull	down	the	GeoJSON	data	for
the	NYC	borough	maps	and	take	a	look	at	its	structure.

In	the	taxidata	directory	on	your	client	machine,	download	the	data	and	rename
the	file	to	something	a	bit	shorter:

$	curl	-O	https://nycdatastables.s3.amazonaws.com/2013-08-19T18:15:35.172Z/

		nyc-borough-boundaries-polygon.geojson

$	mv	nyc-borough-boundaries-polygon.geojson	nyc-boroughs.geojson

Open	the	file	and	look	at	a	feature	record.	Note	the	properties	and	the
geometry	objects	—	in	this	case,	a	polygon	representing	the	boundaries	of	the
borough,	and	the	properties	containing	the	name	of	the	borough	and	other
related	information.

The	Esri	Geometry	API	will	help	us	parse	the	Geometry	JSON	inside	each
feature	but	won’t	help	us	parse	the	id	or	the	properties	fields,	which	can	be
arbitrary	JSON	objects.	To	parse	these	objects,	we	need	to	use	a	Scala	JSON
library,	of	which	there	are	many	to	choose	from.

Spray,	an	open	source	toolkit	for	building	web	services	with	Scala,	provides	a
JSON	library	that	is	up	to	the	task.	spray-json	allows	us	to	convert	any	Scala
object	to	a	corresponding	JsValue	by	calling	an	implicit	toJson	method.	It	also
allows	us	to	convert	any	String	that	contains	JSON	to	a	parsed	intermediate
form	by	calling	parseJson,	and	then	converting	it	to	a	Scala	type	T	by	calling
convertTo[T]	on	the	intermediate	type.	Spray	comes	with	built-in	conversion
implementations	for	the	common	Scala	primitive	types	as	well	as	tuples	and
collection	types,	and	it	also	has	a	formatting	library	that	allows	us	to	declare
the	rules	for	converting	custom	types	like	our	RichGeometry	class	to	and	from
JSON.

First,	we’ll	need	to	create	a	case	class	for	representing	GeoJSON	features.



According	to	the	specification,	a	feature	is	a	JSON	object	that	is	required	to
have	one	field	named	“geometry”	that	corresponds	to	a	GeoJSON	Geometry
type,	and	one	field	named	“properties”	that	is	a	JSON	object	with	any	number
of	key-value	pairs	of	any	type.	A	feature	may	also	have	an	optional	“id”	field
that	may	be	any	JSON	identifier.	Our	Feature	case	class	will	define
corresponding	Scala	fields	for	each	of	the	JSON	fields,	and	will	add	some
convenience	methods	for	looking	up	values	from	the	map	of	properties:

import	spray.json.JsValue

case	class	Feature(

				val	id:	Option[JsValue],

				val	properties:	Map[String,	JsValue],

				val	geometry:	RichGeometry)	{

		def	apply(property:	String)	=	properties(property)

		def	get(property:	String)	=	properties.get(property)

}

We’re	representing	the	Geometry	field	in	Feature	using	an	instance	of	our
RichGeometry	class,	which	we’ll	create	with	the	help	of	the	GeoJSON
geometry	parsing	functions	from	the	Esri	Geometry	API.

We’ll	also	need	a	case	class	that	corresponds	to	the	GeoJson
FeatureCollection.	To	make	the	FeatureCollection	class	a	bit	easier	to	use,
we	will	have	it	extend	the	IndexedSeq[Feature]	trait	by	implementing	the
appropriate	apply	and	length	methods	so	that	we	can	call	the	standard	Scala
Collections	API	methods	like	map,	filter,	and	sortBy	directly	on	the
FeatureCollection	instance	itself,	without	having	to	access	the	underlying
Array[Feature]	value	that	it	wraps:

case	class	FeatureCollection(features:	Array[Feature])

				extends	IndexedSeq[Feature]	{

		def	apply(index:	Int)	=	features(index)

		def	length	=	features.length

}

After	we	have	defined	the	case	classes	for	representing	the	GeoJSON	data,	we
need	to	define	the	formats	that	tell	Spray	how	to	convert	between	our	domain
objects	(RichGeometry,	Feature,	and	FeatureCollection)	and	a	corresponding
JsValue	instance.	To	do	this,	we	need	to	create	Scala	singleton	objects	that
extend	the	RootJsonFormat[T]	trait,	which	defines	abstract	read(jsv:



JsValue):	T	and	write(t:	T):	JsValue	methods.	For	the	RichGeometry	class,
we	can	delegate	most	of	the	parsing	and	formatting	logic	to	the	Esri	Geometry
API,	particularly	the	geometryToGeoJson	and	geometryFromGeoJson	methods	on
the	GeometryEngine	class.	But	for	our	case	classes,	we	need	to	write	the
formatting	code	ourselves.	Here’s	the	formatting	code	for	the	Feature	case
class,	including	some	special	logic	to	handle	the	optional	id	field:

implicit	object	FeatureJsonFormat	extends

				RootJsonFormat[Feature]	{

		def	write(f:	Feature)	=	{

				val	buf	=	scala.collection.mutable.ArrayBuffer(

						"type"	->	JsString("Feature"),

						"properties"	->	JsObject(f.properties),

						"geometry"	->	f.geometry.toJson)

				f.id.foreach(v	=>	{	buf	+=	"id"	->	v})

				JsObject(buf.toMap)

		}

		def	read(value:	JsValue)	=	{

				val	jso	=	value.asJsObject

				val	id	=	jso.fields.get("id")

				val	properties	=	jso.fields("properties").asJsObject.fields

				val	geometry	=	jso.fields("geometry").convertTo[RichGeometry]

				Feature(id,	properties,	geometry)

		}

}

The	FeatureJsonFormat	object	uses	the	implicit	keyword	so	that	the	Spray
library	can	look	it	up	when	the	convertTo[Feature]	method	is	called	on	an
instance	of	JsValue.	You	can	see	the	rest	of	the	RootJsonFormat
implementations	in	the	source	code	for	the	GeoJSON	library	on	GitHub.



Preparing	the	New	York	City	Taxi	Trip	Data
With	the	GeoJSON	and	JodaTime	libraries	in	hand,	it’s	time	to	begin	analyzing
the	NYC	taxi	trip	data	interactively	using	Spark.	Let’s	create	a	taxidata
directory	in	HDFS	and	copy	the	trip	data	into	the	cluster:

$	hadoop	fs	-mkdir	taxidata

$	hadoop	fs	-put	trip_data_1.csv	taxidata/

Now	start	the	Spark	shell,	using	the	--jars	argument	to	make	the	libraries	we
need	available	in	the	REPL:

$	mvn	package

$	spark-shell	--jars	ch08-geotime-2.0.0-jar-with-dependencies.jar

Once	the	Spark	shell	has	loaded,	we	can	create	a	data	set	from	the	taxi	data	and
examine	the	first	few	lines,	just	as	we	have	in	other	chapters:

val	taxiRaw	=	spark.read.option("header",	"true").csv("taxidata")

taxiRaw.show()

The	taxi	data	appears	to	be	a	well-formatted	CSV	file	with	clearly	defined	data
types.	In	Chapter	2,	we	used	the	built-in	type	inference	library	included	in
spark-csv	to	automatically	convert	our	CSV	data	from	strings	to	column-
specific	types.	The	cost	of	this	automatic	conversion	is	two-fold.	First,	we	need
to	do	an	extra	pass	over	the	data	so	that	the	converter	can	infer	the	type	of	each
column.	Second,	if	we	only	want	to	use	a	subset	of	the	columns	in	the	data	set
for	our	analysis,	we	will	need	to	spend	extra	resources	to	do	type	inference	on
columns	that	we	will	end	up	dropping	immediately	when	we	begin	our
analysis.	For	smaller	data	sets,	like	the	record	linkage	data	we	analyzed	in
Chapter	2,	these	costs	are	relatively	inconsequential.	But	for	very	large	data
sets	that	we’re	planning	on	analyzing	again	and	again,	it	may	be	a	better	use	of
our	time	to	create	code	for	performing	custom	type	conversions	on	just	the
subset	of	columns	we	know	we’re	going	to	need.	In	this	chapter,	we’re	going
to	opt	to	do	the	conversion	ourselves	via	custom	code.

Let’s	begin	by	defining	a	case	class	that	contains	just	the	information	about



each	taxi	trip	that	we	want	to	use	in	our	analysis.	Since	we’re	going	to	use	this
case	class	as	the	basis	for	a	data	set,	we	need	to	be	mindful	of	the	fact	that	a
data	set	can	only	be	optimized	for	a	relatively	small	set	of	data	types,	including
Strings,	primitives	(like	Int,	Double,	etc.),	and	certain	special	Scala	types	like
Option.	If	we	want	to	take	advantage	of	the	performance	enhancements	and
analysis	utilities	that	the	Dataset	class	provides,	our	case	class	can	only	contain
fields	that	belong	to	this	small	set	of	supported	types.	(Note	that	the	code
listings	below	are	only	illustrative	extracts	from	the	complete	code	that	you
will	need	to	execute	to	follow	along	with	this	chapter.	Please	refer	to	the
accompanying	Chapter	8	source	code	repository,	in	particular	GeoJson.scala.)

case	class	Trip(

		license:	String,

		pickupTime:	Long,

		dropoffTime:	Long,

		pickupX:	Double,

		pickupY:	Double,

		dropoffX:	Double,

		dropoffY:	Double)

We	are	representing	the	pickupTime	and	dropoffTime	fields	as	Longs	that	are
the	number	of	milliseconds	since	the	Unix	epoch,	and	storing	the	individual	xy
coordinates	of	the	pickup	and	dropoff	locations	in	their	own	fields,	even
though	we	will	typically	work	with	them	by	converting	these	values	to
instances	of	the	Point	class	in	the	Esri	API.

To	parse	the	Rows	from	the	taxiRaw	data	set	into	instances	of	our	case	class,	we
will	need	to	create	some	helper	objects	and	functions.	First,	we	need	to	be
mindful	of	the	fact	that	it’s	likely	that	some	of	the	fields	in	a	row	may	be
missing	from	the	data,	so	it’s	possible	that	when	we	go	to	retrieve	them	from
the	Row,	we’ll	first	need	to	check	to	see	if	they	are	null	before	we	retrieve
them	or	else	we’ll	get	an	error.	We	can	write	a	small	helper	class	to	handle	this
problem	for	any	kind	of	Row	we	need	to	parse:

class	RichRow(row:	org.apache.spark.sql.Row)	{

		def	getAs[T](field:	String):	Option[T]	=	{

				if	(row.isNullAt(row.fieldIndex(field)))	{

						None

				}	else	{

						Some(row.getAs[T](field))

				}

		}

}

http://bit.ly/2qj8oRr


In	the	RichRow	class,	the	getAs[T]	method	always	returns	an	Option[T]	instead
of	the	raw	value	directly	so	that	we	can	explicitly	handle	a	situation	in	which	a
field	is	missing	when	we	parse	a	Row.	In	this	case,	all	of	the	fields	in	our	data
set	are	Strings,	so	we’ll	be	working	with	values	of	type	Option[String].

Next,	we’ll	need	to	process	the	pickup	and	dropoff	times	using	an	instance	of
Java’s	SimpleDateFormat	class	with	an	appropriate	formatting	string	to	get	the
time	in	milliseconds:

def	parseTaxiTime(rr:	RichRow,	timeField:	String):	Long	=	{

	val	formatter	=	new	SimpleDateFormat(

					"yyyy-MM-dd	HH:mm:ss",	Locale.ENGLISH)

	val	optDt	=	rr.getAs[String](timeField)

	optDt.map(dt	=>	formatter.parse(dt).getTime).getOrElse(0L)

}

Then	we	will	parse	the	longitude	and	latitude	of	the	pickup	and	dropoff
locations	from	Strings	to	Doubles	using	Scala’s	implicit	toDouble	method,
defaulting	to	a	value	of	0.0	if	the	coordinate	is	missing:

def	parseTaxiLoc(rr:	RichRow,	locField:	String):	Double	=	{

		rr.getAs[String](locField).map(_.toDouble).getOrElse(0.0)

}

Putting	these	functions	together,	our	resulting	parse	method	looks	like	this:

def	parse(row:	org.apache.spark.sql.Row):	Trip	=	{

		val	rr	=	new	RichRow(row)

		Trip(

				license	=	rr.getAs[String]("hack_license").orNull,

				pickupTime	=	parseTaxiTime(rr,	"pickup_datetime"),

				dropoffTime	=	parseTaxiTime(rr,	"dropoff_datetime"),

				pickupX	=	parseTaxiLoc(rr,	"pickup_longitude"),

				pickupY	=	parseTaxiLoc(rr,	"pickup_latitude"),

				dropoffX	=	parseTaxiLoc(rr,	"dropoff_longitude"),

				dropoffY	=	parseTaxiLoc(rr,	"dropoff_latitude")

		)

}

We	can	test	the	parse	function	on	several	records	from	the	head	of	the	taxiRaw
data	to	verify	that	it	can	correctly	handle	a	sample	of	the	data.



Handling	Invalid	Records	at	Scale
Anyone	who	has	been	working	with	large-scale,	real-world	data	sets	knows
that	they	invariably	contain	at	least	a	few	records	that	do	not	conform	to	the
expectations	of	the	person	who	wrote	the	code	to	handle	them.	Many
MapReduce	jobs	and	Spark	pipelines	have	failed	because	of	invalid	records
that	caused	the	parsing	logic	to	throw	an	exception.

Typically,	we	handle	these	exceptions	one	at	a	time	by	checking	the	logs	for	the
individual	tasks,	figuring	out	which	line	of	code	threw	the	exception,	and	then
figuring	out	how	to	tweak	the	code	to	ignore	or	correct	the	invalid	records.
This	is	a	tedious	process,	and	it	often	feels	like	we’re	playing	whack-a-mole:
just	as	we	get	one	exception	fixed,	we	discover	another	one	on	a	record	that
came	later	within	the	partition.

One	strategy	that	experienced	data	scientists	deploy	when	working	with	a	new
data	set	is	to	add	a	try-catch	block	to	their	parsing	code	so	that	any	invalid
records	can	be	written	out	to	the	logs	without	causing	the	entire	job	to	fail.	If
there	are	only	a	handful	of	invalid	records	in	the	entire	data	set,	we	might	be
okay	with	ignoring	them	and	continuing	with	our	analysis.	With	Spark,	we	can
do	even	better:	we	can	adapt	our	parsing	code	so	that	we	can	interactively
analyze	the	invalid	records	in	our	data	just	as	easily	as	we	would	perform	any
other	kind	of	analysis.

For	any	individual	record	in	an	RDD	or	data	set,	there	are	two	possible
outcomes	for	our	parsing	code:	it	will	either	parse	the	record	successfully	and
return	meaningful	output,	or	it	will	fail	and	throw	an	exception,	in	which	case
we	want	to	capture	both	the	value	of	the	invalid	record	and	the	exception	that
was	thrown.	Whenever	an	operation	has	two	mutually	exclusive	outcomes,	we
can	use	Scala’s	Either[L,	R]	type	to	represent	the	return	type	of	the	operation.
For	us,	the	“left”	outcome	is	the	successfully	parsed	record	and	the	“right”
outcome	is	a	tuple	of	the	exception	we	hit	and	the	input	record	that	caused	it.

The	safe	function	takes	an	argument	named	f	of	type	S	=>	T	and	returns	a	new
S	=>	Either[T,	(S,	Exception)]	that	will	return	either	the	result	of	calling	f
or,	if	an	exception	is	thrown,	a	tuple	containing	the	invalid	input	value	and	the
exception	itself:



def	safe[S,	T](f:	S	=>	T):	S	=>	Either[T,	(S,	Exception)]	=	{

		new	Function[S,	Either[T,	(S,	Exception)]]	with	Serializable	{

				def	apply(s:	S):	Either[T,	(S,	Exception)]	=	{

						try	{

								Left(f(s))

						}	catch	{

								case	e:	Exception	=>	Right((s,	e))

						}

				}

		}

}

We	can	now	create	a	safe	wrapper	function	called	safeParse	by	passing	our
parse	function	(of	type	String	=>	Trip)	to	the	safe	function,	and	then
applying	safeParse	to	the	backing	RDD	of	the	taxiRaw	data	set:

val	safeParse	=	safe(parse)

val	taxiParsed	=	taxiRaw.rdd.map(safeParse)

(Note	that	we	cannot	apply	safeParse	to	the	taxiRaw	data	set	directly	because
the	Either[L,	R]	type	isn’t	supported	by	the	Dataset	API.)

If	we	want	to	determine	how	many	of	the	input	lines	were	parsed	successfully,
we	can	use	the	isLeft	method	on	Either[L,	R]	in	combination	with	the
countByValue	action:

taxiParsed.map(_.isLeft).

countByValue().

foreach(println)

...

(true,14776615)

What	luck	—	none	of	the	records	threw	exceptions	during	parsing!	We	can
now	convert	the	taxiParsed	RDD	into	a	Dataset[Trip]	instance	by	getting	the
left	element	of	the	Either	value:

val	taxiGood	=	taxiParsed.map(_.left.get).toDS

taxiGood.cache()

Even	though	the	records	in	the	taxiGood	data	set	parsed	correctly,	they	may
still	have	data	quality	problems	that	we	want	to	uncover	and	handle.	To	find	the
remaining	data	quality	problems,	we	can	start	to	think	of	conditions	that	we
expect	to	be	true	for	any	correctly	recorded	trip.



Given	the	temporal	nature	of	our	trip	data,	one	reasonable	invariant	that	we	can
expect	is	that	the	dropoff	time	for	any	trip	will	be	sometime	after	the	pickup
time.	We	might	also	expect	that	trips	will	not	take	more	than	a	few	hours	to
complete,	although	it’s	certainly	possible	that	long	trips,	trips	that	take	place
during	rush	hour,	or	trips	that	are	delayed	by	accidents	could	go	on	for	several
hours.	We’re	not	exactly	sure	what	the	cutoff	should	be	for	a	trip	that	takes	a
“reasonable”	amount	of	time.

Let’s	define	a	helper	function	named	hours	that	uses	Java’s	TimeUnit	helper
method	to	convert	the	difference	of	the	pickup	and	dropoff	times	in
milliseconds	to	hours:

val	hours	=	(pickup:	Long,	dropoff:	Long)	=>	{

		TimeUnit.HOURS.convert(dropoff	-	pickup,	TimeUnit.MILLISECONDS)

}

We	would	like	to	be	able	to	use	our	hours	function	to	compute	a	histogram	of
the	number	of	trips	that	lasted	at	least	a	given	number	of	hours.	This	sort	of
calculation	is	exactly	what	the	Dataset	API	and	Spark	SQL	are	designed	to	do,
but	by	default,	we	can	only	use	these	methods	on	the	columns	of	a	Dataset
instance,	whereas	the	hour	UDF	is	computed	from	two	of	these	columns	—	the
pickupTime	and	the	dropoffTime.	We	need	a	mechanism	that	allows	us	to	apply
the	hours	functions	to	the	columns	of	a	data	set	and	then	perform	the	normal
filtering	and	grouping	operations	that	we	are	familiar	with	to	the	results.

This	is	exactly	the	use	case	that	Spark	SQL	UDFs	are	designed	to	address.	By
wrapping	a	Scala	function	in	an	instance	of	Spark’s	UserDefinedFunction
class,	we	can	apply	the	function	to	the	columns	of	a	data	set	and	analyze	the
results.	Let’s	start	by	wrapping	hours	in	a	UDF	and	computing	our	histogram:

import	org.apache.spark.sql.functions.udf

val	hoursUDF	=	udf(hours)

taxiGood.

		groupBy(hoursUDF($"pickupTime",	$"dropoffTime").as("h")).

		count().

		sort("h").

		show()

...

+---+--------+

|		h|			count|

+---+--------+

|	-8|							1|

|		0|22355710|



|		1|			22934|

|		2|					843|

|		3|					197|

|		4|						86|

|		5|						55|

...

Everything	looks	fine	here,	except	for	one	trip	that	took	a	-8	hours	to
complete!	Perhaps	the	DeLorean	from	Back	to	the	Future	is	moonlighting	as
an	NYC	taxi?	Let’s	examine	this	record:

taxiGood.

		where(hoursUDF($"pickupTime",	$"dropoffTime")	<	0).

		collect().

		foreach(println)

This	reveals	the	one	odd	record	—	a	trip	that	began	around	6PM	on	January	25
and	finished	just	before	10AM	the	same	day.	It	isn’t	obvious	what	went	wrong
with	the	recording	of	this	trip	but	because	it	only	seemed	to	happen	for	a	single
record,	it	should	be	okay	to	exclude	it	from	our	analysis	for	now.

Looking	at	the	remainder	of	the	trips	that	went	on	for	a	nonnegative	number	of
hours,	it	appears	that	the	vast	majority	of	taxi	rides	last	for	no	longer	than
three	hours.	We’ll	apply	a	filter	to	the	taxiGood	RDD	so	that	we	can	focus	on
the	distribution	of	these	“typical”	rides	and	ignore	the	outliers	for	now.
Because	it’s	a	bit	easier	to	express	this	filtering	condition	in	Spark	SQL,	let’s
register	our	hours	function	with	Spark	SQL	under	the	name	“hours”,	so	that	we
can	use	it	inside	SQL	expressions:

spark.udf.register("hours",	hours)

val	taxiClean	=	taxiGood.where(

		"hours(pickupTime,	dropoffTime)	BETWEEN	0	AND	3"

)

TO	UDF	OR 	NOT	TO	UDF?

Spark	SQL	makes	it	very	easy	to	inline	business	logic	into	functions	that	can	be	used	from	standard
SQL,	as	we	did	here	with	the	hours	function.	Given	this,	you	might	think	that	it	would	be	a	good	idea
to	move	all	of	your	business	logic	into	UDFs	in	order	to	make	it	easy	to	reuse,	test,	and	maintain.
However,	there	are	a	few	caveats	for	using	UDFs	that	you	should	be	mindful	of	before	you	start
sprinkling	them	throughout	your	code.

First,	UDFs	are	opaque	to	Spark’s	SQL	query	planner	and	execution	engine	in	a	way	that	standard
SQL	query	syntax	is	not,	so	moving	logic	into	a	UDF	instead	of	using	a	literal	SQL	expression	could
hurt	query	performance.



Second,	handling	null	values	in	Spark	SQL	can	get	complicated	quickly,	especially	for	UDFs	that
take	multiple	arguments.	To	properly	handle	nulls,	you	need	to	use	Scala’s	Option[T]	type	or	write
your	UDFs	using	the	Java	wrapper	types,	like	java.lang.Integer	and	java.lang.Double,	instead	of
the	primitive	types	Int	and	Double	in	Scala.



Geospatial	Analysis
Let’s	start	examining	the	geospatial	aspects	of	the	taxi	data.	For	each	trip,	we
have	longitude/latitude	pairs	representing	where	the	passenger	was	picked	up
and	dropped	off.	We	would	like	to	be	able	to	determine	which	borough	each	of
these	longitude/latitude	pairs	belongs	to,	and	identify	any	trips	that	did	not	start
or	end	in	any	of	the	five	boroughs.	For	example,	if	a	taxi	took	passengers	from
Manhattan	to	Newark	International	Airport,	that	would	be	a	valid	ride	that
would	be	interesting	to	analyze,	even	though	it	would	not	end	within	one	of	the
five	boroughs.	However,	if	it	looks	as	if	a	taxi	took	a	passenger	to	the	South
Pole,	we	can	be	reasonably	confident	that	the	record	is	invalid	and	should	be
excluded	from	our	analysis.

To	perform	our	borough	analysis,	we	need	to	load	the	GeoJSON	data	we
downloaded	earlier	and	stored	in	the	nyc-boroughs.geojson	file.	The	Source
class	in	the	scala.io	package	makes	it	easy	to	read	the	contents	of	a	text	file	or
URL	into	the	client	as	a	single	String:

val	geojson	=	scala.io.Source.

		fromFile("nyc-boroughs.geojson").

		mkString

Now	we	need	to	import	the	GeoJSON	parsing	tools	we	reviewed	earlier	in	the
chapter	using	Spray	and	Esri	into	the	Spark	shell	so	that	we	can	parse	the
geojson	string	into	an	instance	of	our	FeatureCollection	case	class:

import	com.cloudera.datascience.geotime._

import	GeoJsonProtocol._

import	spray.json._

val	features	=	geojson.parseJson.convertTo[FeatureCollection]

We	can	create	a	sample	point	to	test	the	functionality	of	the	Esri	Geometry	API
and	verify	that	it	can	correctly	identify	which	borough	a	particular	xy
coordinate	belongs	to:

import	com.esri.core.geometry.Point

val	p	=	new	Point(-73.994499,	40.75066)

val	borough	=	features.find(f	=>	f.geometry.contains(p))



Before	we	use	the	features	on	the	taxi	trip	data,	we	should	take	a	moment	to
think	about	how	to	organize	this	geospatial	data	for	maximum	efficiency.	One
option	would	be	to	research	data	structures	that	are	optimized	for	geospatial
lookups,	such	as	quad	trees,	and	then	find	or	write	our	own	implementation.
But	let’s	see	if	we	can	come	up	with	a	quick	heuristic	that	will	allow	us	to
bypass	that	bit	of	work.

The	find	method	will	iterate	through	the	FeatureCollection	until	it	finds	a
feature	whose	geometry	contains	the	given	Point	of	longitude/latitude.	Most
taxi	rides	in	NYC	begin	and	end	in	Manhattan,	so	if	the	geospatial	features	that
represent	Manhattan	are	earlier	in	the	sequence,	most	of	the	find	calls	will
return	relatively	quickly.	We	can	use	the	fact	that	the	boroughCode	property	of
each	feature	can	be	used	as	a	sorting	key,	with	the	code	for	Manhattan	equal	to
1	and	the	code	for	Staten	Island	equal	to	5.	Within	the	features	for	each
borough,	we	want	the	features	associated	with	the	largest	polygons	to	come
before	the	smaller	polygons,	because	most	trips	will	be	to	and	from	the
“major”	region	of	each	borough.	Sorting	the	features	by	the	combination	of
the	borough	code	and	the	area2D()	of	each	feature’s	geometry	should	do	the
trick:

val	areaSortedFeatures	=	features.sortBy(f	=>	{

		val	borough	=	f("boroughCode").convertTo[Int]

		(borough,	-f.geometry.area2D())

})

Note	that	we’re	sorting	based	on	the	negation	of	the	area2D()	value	because	we
want	the	largest	polygons	to	come	first,	and	Scala	sorts	in	ascending	order	by
default.

Now	we	can	broadcast	the	sorted	features	in	the	areaSortedFeatures	sequence
to	the	cluster	and	write	a	function	that	uses	these	features	to	find	out	in	which
of	the	five	boroughs	(if	any)	a	particular	trip	ended:

val	bFeatures	=	sc.broadcast(areaSortedFeatures)

val	bLookup	=	(x:	Double,	y:	Double)	=>	{

		val	feature:	Option[Feature]	=	bFeatures.value.find(f	=>	{

				f.geometry.contains(new	Point(x,	y))

		})

		feature.map(f	=>	{

				f("borough").convertTo[String]

		}).getOrElse("NA")



}

val	boroughUDF	=	udf(bLookup)

We	can	apply	boroughUDF	to	the	trips	in	the	taxiClean	RDD	to	create	a
histogram	of	trips	by	borough:

taxiClean.

		groupBy(boroughUDF($"dropoffX",	$"dropoffY")).

		count().

		show()

...

+-----------------------+--------+

|UDF(dropoffX,	dropoffY)|			count|

+-----------------------+--------+

|																	Queens|		672192|

|																					NA|	7942421|

|															Brooklyn|		715252|

|										Staten	Island|				3338|

|														Manhattan|12979047|

|																		Bronx|			67434|

+-----------------------+--------+

As	we	expected,	the	vast	majority	of	trips	end	in	the	borough	of	Manhattan,
while	relatively	few	trips	end	in	Staten	Island.	One	surprising	observation	is
the	number	of	trips	that	end	outside	of	any	borough;	the	number	of	NA	records
is	substantially	larger	than	the	number	of	taxi	rides	that	end	in	the	Bronx.	Let’s
grab	some	examples	of	this	kind	of	trip	from	the	data:

taxiClean.

		where(boroughUDF($"dropoffX",	$"dropoffY")	===	"NA").

		show()

When	we	print	out	these	records,	we	see	that	a	substantial	fraction	of	them	start
and	end	at	the	point	(0.0,	0.0),	indicating	that	the	trip	location	is	missing	for
these	records.	We	should	filter	these	events	out	of	our	data	set	because	they
won’t	help	us	with	our	analysis:

val	taxiDone	=	taxiClean.where(

		"dropoffX	!=	0	and	dropoffY	!=	0	and	pickupX	!=	0	and	pickupY	!=	0"

).cache()

When	we	rerun	our	borough	analysis	on	the	taxiDone	RDD,	we	see	this:

taxiDone.

		groupBy(boroughUDF($"dropoffX",	$"dropoffY")).

		count().

		show()



...

+-----------------------+--------+

|UDF(dropoffX,	dropoffY)|			count|

+-----------------------+--------+

|																	Queens|		670912|

|																					NA|			62778|

|															Brooklyn|		714659|

|										Staten	Island|				3333|

|														Manhattan|12971314|

|																		Bronx|			67333|

+-----------------------+--------+

Our	zero-point	filter	removed	a	small	number	of	observations	from	the	output
boroughs,	but	it	removed	a	large	fraction	of	the	NA	entries,	leaving	a	much
more	reasonable	number	of	observations	that	had	dropoffs	outside	the	city.



Sessionization	in	Spark
Our	goal,	from	many	pages	ago,	was	to	investigate	the	relationship	between
the	borough	in	which	a	driver	drops	his	passenger	off	and	the	amount	of	time
it	takes	to	acquire	another	fare.	At	this	point,	the	taxiDone	data	set	contains	all
of	the	individual	trips	for	each	taxi	driver	in	individual	records	distributed
across	different	partitions	of	the	data.	To	compute	the	length	of	time	between
the	end	of	one	ride	and	the	start	of	the	next	one,	we	need	to	aggregate	all	of	the
trips	from	a	shift	by	a	single	driver	into	a	single	record,	and	then	sort	the	trips
within	that	shift	by	time.	The	sort	step	allows	us	to	compare	the	dropoff	time	of
one	trip	to	the	pickup	time	of	the	next	trip.	This	kind	of	analysis,	in	which	we
want	to	analyze	a	single	entity	as	it	executes	a	series	of	events	over	time,	is
called	sessionization,	and	is	commonly	performed	over	web	logs	to	analyze
the	behavior	of	the	users	of	a	website.

Sessionization	can	be	a	very	powerful	technique	for	uncovering	insights	in
data	and	building	new	data	products	that	can	be	used	to	help	people	make	better
decisions.	For	example,	Google’s	spell-correction	engine	is	built	on	top	of	the
sessions	of	user	activity	that	Google	builds	each	day	from	the	logged	records
of	every	event	(searches,	clicks,	maps	visits,	etc.)	occurring	on	its	web
properties.	To	identify	likely	spell-correction	candidates,	Google	processes
those	sessions	looking	for	situations	where	a	user	typed	a	query,	didn’t	click
anything,	typed	a	slightly	different	query	a	few	seconds	later,	and	then	clicked	a
result	and	didn’t	come	back	to	Google.	Then	it	counts	how	often	this	pattern
occurs	for	any	pair	of	queries.	If	it	occurs	frequently	enough	(e.g.,	if	every
time	we	see	the	query	“untied	stats,”	it’s	followed	a	few	seconds	later	by	the
query	“united	states”),	then	we	assume	that	the	second	query	is	a	spell
correction	of	the	first.

This	analysis	takes	advantage	of	the	patterns	of	human	behavior	that	are
represented	in	the	event	logs	to	build	a	spell-correction	engine	from	data	that
is	more	powerful	than	any	engine	that	could	be	created	from	a	dictionary.	The
engine	can	be	used	to	perform	spell	correction	in	any	language,	and	can
correct	words	that	might	not	be	included	in	any	dictionary	(e.g.,	the	name	of	a
new	startup),	and	can	even	correct	queries	like	“untied	stats”	where	none	of	the
words	are	misspelled!	Google	uses	similar	techniques	to	show	recommended



and	related	searches,	as	well	as	to	decide	which	queries	should	return	a
OneBox	result	that	gives	the	answer	to	a	query	on	the	search	page	itself,
without	requiring	that	the	user	click	through	to	a	different	page.	There	are
OneBoxes	for	weather,	scores	from	sports	games,	addresses,	and	lots	of	other
kinds	of	queries.

So	far,	information	about	the	set	of	events	that	occurs	to	each	entity	is	spread
out	across	the	RDD’s	partitions,	so,	for	analysis,	we	need	to	place	these
relevant	events	next	to	each	other	and	in	chronological	order.	In	the	next
section,	we’ll	show	how	to	efficiently	construct	and	analyze	sessions	using
advanced	functionality	that	was	introduced	in	Spark	2.0.



Building	Sessions:	Secondary	Sorts	in	Spark
The	naive	way	to	create	sessions	in	Spark	is	to	perform	a	groupBy	on	the
identifier	we	want	to	create	sessions	for	and	then	sort	the	events	postshuffle	by
a	timestamp	identifier.	If	we	only	have	a	small	number	of	events	for	each
entity,	this	approach	will	work	reasonably	well.	However,	because	this
approach	requires	all	the	events	for	any	particular	entity	to	be	in	memory	at	the
same	time,	it	will	not	scale	as	the	number	of	events	for	each	entity	gets	larger
and	larger.	We	need	a	way	of	building	sessions	that	does	not	require	all	of	the
events	for	a	particular	entity	to	be	held	in	memory	at	the	same	time	for	sorting.

In	MapReduce,	we	can	build	sessions	by	performing	a	secondary	sort,	where
we	create	a	composite	key	made	up	of	an	identifier	and	a	timestamp	value,	sort
all	of	the	records	on	the	composite	key,	and	then	use	a	custom	partitioner	and
grouping	function	to	ensure	that	all	of	the	records	for	the	same	identifier
appear	in	the	same	output	partition.	Fortunately,	Spark	can	also	support	this
same	secondary	sort	pattern	by	combining	its	repartition	and	a
sortWithinPartitions	transformation;	in	Spark	2.0,	sessionizing	a	data	set
can	be	done	in	three	lines	of	code:

val	sessions	=	taxiDone.

		repartition($"license").

		sortWithinPartitions($"license",	$"pickupTime")

First,	we	use	the	repartition	method	to	ensure	that	all	of	the	Trip	records	that
have	the	same	value	for	the	license	column	end	up	in	the	same	partition.	Then,
within	each	of	these	partitions,	we	sort	the	records	by	their	license	value	(so
all	trips	by	the	same	driver	appear	together)	and	then	by	their	pickupTime,	so
that	the	sequence	of	trips	appear	in	sorted	order	within	the	partition.	Now	when
we	process	the	trip	records	using	a	method	like	mapPartitions,	we	can	be	sure
that	the	trips	are	ordered	in	a	way	that	is	optimal	for	sessions	analysis.	Because
this	operation	triggers	a	shuffle	and	a	fair	bit	of	computation,	and	we’ll	need	to
use	the	results	more	than	once,	we	cache	them:

sessions.cache()



Executing	a	sessionization	pipeline	is	an	expensive	operation,	and	the
sessionized	data	is	often	useful	for	many	different	analysis	tasks	that	we	might
want	to	perform.	In	settings	where	one	might	want	to	pick	up	on	the	analysis
later	or	collaborate	with	other	data	scientists,	it’s	a	good	idea	to	amortize	the
cost	of	sessionizing	a	large	data	set	by	only	performing	the	sessionization
once,	and	then	writing	the	sessionized	data	to	HDFS	so	that	it	can	be	used	to
answer	lots	of	different	questions.	Performing	sessionization	once	is	also	a
good	way	to	enforce	standard	rules	for	session	definitions	across	the	entire
data	science	team,	which	has	the	same	benefits	for	ensuring	apples-to-apples
comparisons	of	results.

At	this	point,	we	are	ready	to	analyze	our	sessions	data	to	see	how	long	it	takes
for	a	driver	to	find	his	next	fare	after	a	dropoff	in	a	particular	borough.	We
will	create	a	boroughDuration	method	that	takes	two	instances	of	the	Trip
class	and	computes	both	the	borough	of	the	first	trip	and	the	duration	in
seconds	between	the	dropoff	time	of	the	first	trip	and	the	pickup	time	of	the
second:

def	boroughDuration(t1:	Trip,	t2:	Trip):	(String,	Long)	=	{

		val	b	=	bLookup(t1.dropoffX,	t1.dropoffY)

		val	d	=	(t2.pickupTime	-	t1.dropoffTime)	/	1000

		(b,	d)

}

We	want	to	apply	our	new	function	to	all	sequential	pairs	of	trips	inside	our
sessions	data	set.	Although	we	could	write	a	for	loop	to	do	this,	we	can	also
use	the	sliding	method	of	the	Scala	Collections	API	to	get	the	sequential	pairs
in	a	more	functional	way:

val	boroughDurations:	DataFrame	=

		sessions.mapPartitions(trips	=>	{

				val	iter:	Iterator[Seq[Trip]]	=	trips.sliding(2)

				val	viter	=	iter.

						filter(_.size	==	2).

						filter(p	=>	p(0).license	==	p(1).license)

				viter.map(p	=>	boroughDuration(p(0),	p(1)))

		}).toDF("borough",	"seconds")

The	filter	call	on	the	result	of	the	sliding	method	ensures	that	we	ignore
any	sessions	that	contain	only	a	single	trip,	or	any	trip	pairs	that	have	different
values	of	the	license	field.	The	result	of	our	mapPartitions	over	the	sessions



is	a	data	frame	of	borough/duration	pairs	that	we	can	now	examine.	First,	we
should	do	a	validation	check	to	ensure	that	most	of	the	durations	are
nonnegative:

boroughDurations.

		selectExpr("floor(seconds	/	3600)	as	hours").

		groupBy("hours").

		count().

		sort("hours").

		show()

...

+-----+--------+

|hours|			count|

+-----+--------+

|			-3|							2|

|			-2|						16|

|			-1|				4253|

|				0|13359033|

|				1|		347634|

|				2|			76286|

|				3|			24812|

|				4|			10026|

|				5|				4789|

Only	a	few	of	the	records	have	a	negative	duration,	and	when	we	examine	them
more	closely,	there	don’t	seem	to	be	any	common	patterns	to	them	that	we
could	use	to	understand	the	source	of	the	erroneous	data.	If	we	exclude	these
negative	duration	records	from	our	input	data	set	and	look	at	the	average	and
standard	deviation	of	the	pickup	times	by	borough,	we	see	this:

boroughDurations.

		where("seconds	>	0	AND	seconds	<	60*60*4").

		groupBy("borough").

		agg(avg("seconds"),	stddev("seconds")).

		show()

...

+-------------+------------------+--------------------+

|						borough|						avg(seconds)|stddev_samp(seconds)|

+-------------+------------------+--------------------+

|							Queens|2380.6603554494727|		2206.6572799118035|

|											NA|		2006.53571169866|		1997.0891370324784|

|					Brooklyn|	1365.394576250576|		1612.9921698951398|

|Staten	Island|									2723.5625|		2395.7745475546385|

|				Manhattan|	631.8473780726746|			1042.919915477234|

|								Bronx|1975.9209786770646|			1704.006452085683|

+-------------+------------------+--------------------+

As	we	would	expect,	the	data	shows	that	dropoffs	in	Manhattan	have	the
shortest	amount	of	downtime	for	drivers,	at	around	10	minutes.	Taxi	rides	that
end	in	Brooklyn	have	a	downtime	of	more	than	twice	that,	and	the	relatively
few	rides	that	end	in	Staten	Island	take	a	driver	an	average	of	almost	45



minutes	to	get	to	his	next	fare.

As	the	data	demonstrates,	taxi	drivers	have	a	major	financial	incentive	to
discriminate	among	passengers	based	on	their	final	destination;	dropoffs	in
Staten	Island,	in	particular,	involve	an	extensive	amount	of	downtime	for	a
driver.	The	NYC	Taxi	and	Limousine	Commission	has	made	a	major	effort
over	the	years	to	identify	this	discrimination	and	has	fined	drivers	who	have
been	caught	rejecting	passengers	because	of	where	they	wanted	to	go.	It	would
be	interesting	to	attempt	to	examine	the	data	for	unusually	short	taxi	rides	that
could	be	indicative	of	a	dispute	between	the	driver	and	the	passenger	about
where	the	passenger	wanted	to	be	dropped	off.



Where	to	Go	from	Here
Imagine	using	this	same	technique	on	the	taxi	data	to	build	an	application	that
could	recommend	the	best	place	for	a	cab	to	go	after	a	dropoff	based	on
current	traffic	patterns	and	the	historical	record	of	next-best	locations
contained	within	this	data.	You	could	also	look	at	the	information	from	the
perspective	of	someone	trying	to	catch	a	cab:	given	the	current	time,	place,	and
weather	data,	what	is	the	probability	that	I	will	be	able	to	hail	a	cab	from	the
street	within	the	next	five	minutes?	This	sort	of	information	could	be
incorporated	into	applications	like	Google	Maps	to	help	travelers	decide	when
to	leave	and	which	travel	option	they	should	take.

The	Esri	API	is	one	of	a	few	different	tools	that	can	help	us	interact	with
geospatial	data	from	JVM-based	languages.	Another	is	GeoTrellis,	a
geospatial	library	written	in	Scala,	that	seeks	to	be	easily	accessible	from
Spark.	A	third	is	GeoTools,	a	Java-based	GIS	toolkit.



Chapter	9.	Estimating	Financial	Risk
Through	Monte	Carlo	Simulation
Sandy	Ryza

If	you	want	to	understand	geology,	study	earthquakes.	If	you	want	to
understand	the	economy,	study	the	Depression.
Ben	Bernanke

Under	reasonable	circumstances,	how	much	can	you	expect	to	lose?	This	is	the
quantity	that	the	financial	statistic	Value	at	Risk	(VaR)	seeks	to	measure.	Since
its	development	soon	after	the	stock	market	crash	of	1987,	VaR	has	seen
widespread	use	across	financial	services	organizations.	The	statistic	plays	a
vital	role	in	the	management	of	these	institutions	by	helping	to	determine	how
much	cash	they	must	hold	to	meet	the	credit	ratings	they	seek.	In	addition,	some
use	it	to	more	broadly	understand	the	risk	characteristics	of	large	portfolios,
and	others	compute	it	before	executing	trades	to	help	inform	immediate
decisions.

Many	of	the	most	sophisticated	approaches	to	estimating	this	statistic	rely	on
computationally	intensive	simulation	of	markets	under	random	conditions.	The
technique	behind	these	approaches,	called	Monte	Carlo	simulation,	involves
posing	thousands	or	millions	of	random	market	scenarios	and	observing	how
they	tend	to	affect	a	portfolio.	Spark	is	an	ideal	tool	for	Monte	Carlo
simulation,	because	the	technique	is	naturally	massively	parallelizable.	Spark
can	leverage	thousands	of	cores	to	run	random	trials	and	aggregate	their
results.	As	a	general-purpose	data	transformation	engine,	it	is	also	adept	at
performing	the	pre-	and	postprocessing	steps	that	surround	the	simulations.	It
can	transform	raw	financial	data	into	the	model	parameters	needed	to	carry	out
the	simulations,	as	well	as	support	ad	hoc	analysis	of	the	results.	Its	simple
programming	model	can	drastically	reduce	development	time	compared	to
more	traditional	approaches	that	use	HPC	environments.

Let’s	define	“how	much	can	you	expect	to	lose”	a	little	more	rigorously.	VaR	is
a	simple	measure	of	investment	risk	that	tries	to	provide	a	reasonable	estimate



of	the	maximum	probable	loss	in	value	of	an	investment	portfolio	over	a
particular	time	period.	A	VaR	statistic	depends	on	three	parameters:	a	portfolio,
a	time	period,	and	a	probability.	A	VaR	of	$1	million	with	a	5%	probability	and
two	weeks	indicates	the	belief	that	the	portfolio	stands	only	a	5%	chance	of
losing	more	than	$1	million	over	two	weeks.

We’ll	also	discuss	how	to	compute	a	related	statistic	called	Conditional	Value
at	Risk	(CVaR),	sometimes	known	as	expected	shortfall,	which	the	Basel
Committee	on	Banking	Supervision	has	recently	proposed	as	a	better	risk
measure	than	VaR.	A	CVaR	statistic	has	the	same	three	parameters	as	a	VaR
statistic,	but	considers	the	expected	loss	instead	of	the	cutoff	value.	A	CVaR	of
$5	million	with	a	5%	q-value	and	two	weeks	indicates	the	belief	that	the
average	loss	in	the	worst	5%	of	outcomes	is	$5	million.

In	service	of	modeling	VaR,	we’ll	introduce	a	few	different	concepts,
approaches,	and	packages.	We’ll	cover	kernel	density	estimation	and	plotting
using	the	breeze-viz	package,	sampling	using	the	multivariate	normal
distribution,	and	statistics	functions	using	the	Apache	Commons	Math	package.



Terminology
This	chapter	makes	use	of	a	set	of	terms	specific	to	the	finance	domain.	We’ll
briefly	define	them	here:

Instrument
A	tradable	asset,	such	as	a	bond,	loan,	option,	or	stock	investment.	At	any
particular	time,	an	instrument	is	considered	to	have	a	value,	which	is	the
price	for	which	it	could	be	sold.

Portfolio
A	collection	of	instruments	owned	by	a	financial	institution.

Return
The	change	in	an	instrument	or	portfolio’s	value	over	a	time	period.

Loss
A	negative	return.

Index
An	imaginary	portfolio	of	instruments.	For	example,	the	NASDAQ
Composite	Index	includes	about	3,000	stocks	and	similar	instruments	for
major	US	and	international	companies.

Market	factor
A	value	that	can	be	used	as	an	indicator	of	macroaspects	of	the	financial
climate	at	a	particular	time	—	for	example,	the	value	of	an	index,	the
gross	domestic	product	of	the	United	States,	or	the	exchange	rate	between
the	dollar	and	the	euro.	We	will	often	refer	to	market	factors	as	just
factors.



Methods	for	Calculating	VaR
So	far,	our	definition	of	VaR	has	been	fairly	open-ended.	Estimating	this
statistic	requires	proposing	a	model	for	how	a	portfolio	functions	and
choosing	the	probability	distribution	its	returns	are	likely	to	take.	Institutions
employ	a	variety	of	approaches	for	calculating	VaR,	all	of	which	tend	to	fall
under	a	few	general	methods.



Variance-Covariance
Variance-covariance	is	by	far	the	simplest	and	least	computationally	intensive
method.	Its	model	assumes	that	the	return	of	each	instrument	is	normally
distributed,	which	allows	deriving	a	estimate	analytically.



Historical	Simulation
Historical	simulation	extrapolates	risk	from	historical	data	by	using	its
distribution	directly	instead	of	relying	on	summary	statistics.	For	example,	to
determine	a	95%	VaR	for	a	portfolio,	we	might	look	at	that	portfolio’s
performance	for	the	last	100	days	and	estimate	the	statistic	as	its	value	on	the
fifth-worst	day.	A	drawback	of	this	method	is	that	historical	data	can	be	limited
and	fails	to	include	what-ifs.	For	example,	what	if	the	history	we	have	for	the
instruments	in	our	portfolio	lacks	market	collapses,	and	we	want	to	model
what	happens	to	our	portfolio	in	these	situations.	Techniques	exist	for	making
historical	simulation	robust	to	these	issues,	such	as	introducing	“shocks”	into
the	data,	but	we	won’t	cover	them	here.



Monte	Carlo	Simulation
Monte	Carlo	simulation,	which	the	rest	of	this	chapter	will	focus	on,	tries	to
weaken	the	assumptions	in	the	previous	methods	by	simulating	the	portfolio
under	random	conditions.	When	we	can’t	derive	a	closed	form	for	a
probability	distribution	analytically,	we	can	often	estimate	its	probability
density	function	(PDF)	by	repeatedly	sampling	simpler	random	variables	that	it
depends	on	and	seeing	how	it	plays	out	in	aggregate.	In	its	most	general	form,
this	method:

Defines	a	relationship	between	market	conditions	and	each	instrument’s
returns.	This	relationship	takes	the	form	of	a	model	fitted	to	historical
data.

Defines	distributions	for	the	market	conditions	that	are	straightforward	to
sample	from.	These	distributions	are	fitted	to	historical	data.

Poses	trials	consisting	of	random	market	conditions.

Calculates	the	total	portfolio	loss	for	each	trial,	and	uses	these	losses	to
define	an	empirical	distribution	over	losses.	This	means	that,	if	we	run
100	trials	and	want	to	estimate	the	5%	VaR,	we	would	choose	it	as	the	loss
from	the	trial	with	the	fifth-greatest	loss.	To	calculate	the	5%	CVaR,	we
would	find	the	average	loss	over	the	five	worst	trials.

Of	course,	the	Monte	Carlo	method	isn’t	perfect	either.	It	relies	on	models	for
generating	trial	conditions	and	for	inferring	instrument	performance,	and
these	models	must	make	simplifying	assumptions.	If	these	assumptions	don’t
correspond	to	reality,	then	neither	will	the	final	probability	distribution	that
comes	out.



Our	Model
A	Monte	Carlo	risk	model	typically	phrases	each	instrument’s	return	in	terms
of	a	set	of	market	factors.	Common	market	factors	might	be	the	value	of
indexes	like	the	S&P	500,	the	US	GDP,	or	currency	exchange	rates.	We	then
need	a	model	that	predicts	the	return	of	each	instrument	based	on	these	market
conditions.	In	our	simulation,	we’ll	use	a	simple	linear	model.	By	our	previous
definition	of	return,	a	factor	return	is	a	change	in	the	value	of	a	market	factor
over	a	particular	time.	For	example,	if	the	value	of	the	S&P	500	moves	from
2,000	to	2,100	over	a	time	interval,	its	return	would	be	100.	We’ll	derive	a	set
of	features	from	simple	transformations	of	the	factor	returns.	That	is,	the
market	factor	vector	mt	for	a	trial	t	is	transformed	by	some	function	φ	to
produce	a	feature	vector	of	possible	different	length	ft:

ft	=	ϕ(mt)

For	each	instrument,	we’ll	train	a	model	that	assigns	a	weight	to	each	feature.
To	calculate	rit,	the	return	of	instrument	i	in	trial	t,	we	use	ci,	the	intercept	term
for	the	instrument;	wij,	the	regression	weight	for	feature	j	on	instrument	i;	and
ftj,	the	randomly	generated	value	of	feature	j	in	trial	t:

This	means	that	the	return	of	each	instrument	is	calculated	as	the	sum	of	the
returns	of	the	market	factor	features	multiplied	by	their	weights	for	that
instrument.	We	can	fit	the	linear	model	for	each	instrument	using	historical
data	(also	known	as	doing	linear	regression).	If	the	horizon	of	the	VaR
calculation	is	two	weeks,	the	regression	treats	every	(overlapping)	two-week
interval	in	history	as	a	labeled	point.



It’s	also	worth	mentioning	that	we	could	have	chosen	a	more	complicated
model.	For	example,	the	model	need	not	be	linear:	it	could	be	a	regression	tree
or	explicitly	incorporate	domain-specific	knowledge.

Now	that	we	have	our	model	for	calculating	instrument	losses	from	market
factors,	we	need	a	process	for	simulating	the	behavior	of	market	factors.	A
simple	assumption	is	that	each	market	factor	return	follows	a	normal
distribution.	To	capture	the	fact	that	market	factors	are	often	correlated	—
when	NASDAQ	is	down,	the	Dow	is	likely	to	be	suffering	as	well	—	we	can
use	a	multivariate	normal	distribution	with	a	non-diagonal	covariance	matrix:

where	μ	is	a	vector	of	the	empirical	means	of	the	returns	of	the	factors	and	Σ	is
the	empirical	covariance	matrix	of	the	returns	of	the	factors.

As	before,	we	could	have	chosen	a	more	complicated	method	of	simulating	the
market	or	assumed	a	different	type	of	distribution	for	each	market	factor,
perhaps	using	distributions	with	fatter	tails.



Getting	the	Data
It	can	be	difficult	to	find	large	volumes	of	nicely	formatted	historical	price
data,	but	Yahoo!	has	a	variety	of	stock	data	available	for	download	in	CSV
format.	The	following	script,	located	in	the	risk/data	directory	of	the	repo,	will
make	a	series	of	REST	calls	to	download	histories	for	all	the	stocks	included
in	the	NASDAQ	index	and	place	them	in	a	stocks/	directory:

$	./download-all-symbols.sh

We	also	need	historical	data	for	risk	factors.	For	our	factors,	we’ll	use	the
values	of	the	S&P	500	and	NASDAQ	indexes,	as	well	as	the	prices	of	5-year
and	30-year	US	Treasury	bonds.	These	can	all	be	downloaded	from	Yahoo!	as
well:

$	mkdir	factors/

$	./download-symbol.sh	^GSPC	factors

$	./download-symbol.sh	^IXIC	factors

$	./download-symbol.sh	^TYX	factors

$	./download-symbol.sh	^FVX	factors



Preprocessing
The	first	few	rows	of	the	Yahoo!-formatted	data	for	GOOGL	looks	like:

Date,Open,High,Low,Close,Volume,Adj	Close

2014-10-24,554.98,555.00,545.16,548.90,2175400,548.90

2014-10-23,548.28,557.40,545.50,553.65,2151300,553.65

2014-10-22,541.05,550.76,540.23,542.69,2973700,542.69

2014-10-21,537.27,538.77,530.20,538.03,2459500,538.03

2014-10-20,520.45,533.16,519.14,532.38,2748200,532.38

Let’s	fire	up	the	Spark	shell.	In	this	chapter,	we	rely	on	several	libraries	to
make	our	lives	easier.	The	GitHub	repo	contains	a	Maven	project	that	can	be
used	to	build	a	JAR	file	that	packages	all	these	dependencies	together:

$	cd	ch09-risk/

$	mvn	package

$	cd	data/

$	spark-shell	--jars	../target/ch09-risk-2.0.0-jar-with-dependencies.jar

For	each	instrument	and	factor,	we	want	to	derive	a	list	of	(date,	closing	price)
tuples.	The	java.time	library	contains	useful	functionality	for	representing	and
manipulating	dates.	We	can	represent	our	dates	as	LocalDate	objects.	We	can
use	the	DateTimeFormatter	to	parse	dates	in	the	Yahoo	date	format:

import	java.time.LocalDate

import	java.time.format.DateTimeFormatter

val	format	=	DateTimeFormatter.ofPattern("yyyy-MM-dd")

LocalDate.parse("2014-10-24")

res0:	java.time.LocalDate	=	2014-10-24

The	3,000-instrument	histories	and	4-factor	histories	are	small	enough	to	read
and	process	locally.	This	remains	the	case	even	for	larger	simulations	with
hundreds	of	thousands	of	instruments	and	thousands	of	factors.	The	need	arises
for	a	distributed	system	like	Spark	when	we’re	actually	running	the
simulations,	which	can	require	massive	amounts	of	computation	on	each
instrument.

To	read	a	full	Yahoo	history	from	local	disk:

import	java.io.File



def	readYahooHistory(file:	File):	Array[(LocalDate,	Double)]	=	{

		val	formatter	=	DateTimeFormatter.ofPattern("yyyy-MM-dd")

		val	lines	=	scala.io.Source.fromFile(file).getLines().toSeq

		lines.tail.map	{	line	=>

				val	cols	=	line.split(',')

				val	date	=	LocalDate.parse(cols(0),	formatter)

				val	value	=	cols(1).toDouble

				(date,	value)

		}.reverse.toArray

}

Notice	that	lines.tail	is	useful	for	excluding	the	header	row.	We	load	all	the
data	and	filter	out	instruments	with	less	than	five	years	of	history:

val	start	=	LocalDate.of(2009,	10,	23)

val	end	=	LocalDate.of(2014,	10,	23)

val	stocksDir	=	new	File("stocks/")

val	files	=	stocksDir.listFiles()

val	allStocks	=	files.iterator.flatMap	{	file	=>>	

		try	{

				Some(readYahooHistory(file))

		}	catch	{

				case	e:	Exception	=>	None

		}

}

val	rawStocks	=	allStocks.filter(_.size	>=	260	*	5	+	10)

val	factorsPrefix	=	"factors/"

val	rawFactors	=	Array(

		"^GSPC.csv",	"^IXIC.csv",	"^TYX.csv",	"^FVX.csv").

		map(x	=>	new	File(factorsPrefix	+	x)).

		map(readYahooHistory)

Using	iterator	here	allows	us	to	stream	over	the	files	instead	of	loading
their	full	contents	in	memory	all	at	once.

Different	types	of	instruments	may	trade	on	different	days,	or	the	data	may
have	missing	values	for	other	reasons,	so	it	is	important	to	make	sure	that	our
different	histories	align.	First,	we	need	to	trim	all	of	our	time	series	to	the
same	region	in	time.	Then	we	need	to	fill	in	missing	values.	To	deal	with	time
series	that	are	missing	values	at	the	start	and	end	dates	in	the	time	region,	we
simply	fill	in	those	dates	with	nearby	values	in	the	time	region:

def	trimToRegion(history:	Array[(LocalDate,	Double)],

				start:	LocalDate,	end:	LocalDate)

		:	Array[(LocalDate,	Double)]	=	{

		var	trimmed	=	history.dropWhile(_._1.isBefore(start)).

				takeWhile(x	=>	x._1.isBefore(end)	||	x._1.isEqual(end))

		if	(trimmed.head._1	!=	start)	{

				trimmed	=	Array((start,	trimmed.head._2))	++	trimmed



		}

		if	(trimmed.last._1	!=	end)	{

				trimmed	=	trimmed	++	Array((end,	trimmed.last._2))

		}

		trimmed

}

To	deal	with	missing	values	within	a	time	series,	we	use	a	simple	imputation
strategy	that	fills	in	an	instrument’s	price	as	its	most	recent	closing	price
before	that	day.	Because	there	is	no	pretty	Scala	Collections	method	that	can	do
this	for	us,	we	write	it	on	our	own.	The	spark-ts	and	flint	libraries	are
alternatives	that	contain	an	array	of	useful	time	series	manipulations	functions.

import	scala.collection.mutable.ArrayBuffer

def	fillInHistory(history:	Array[(DateTime,	Double)],

				start:	DateTime,	end:	DateTime):	Array[(DateTime,	Double)]	=	{

		var	cur	=	history

		val	filled	=	new	ArrayBuffer[(DateTime,	Double)]()

		var	curDate	=	start

		while	(curDate	<	end)	{

				if	(cur.tail.nonEmpty	&&	cur.tail.head._1	==	curDate)	{

						cur	=	cur.tail

				}

				filled	+=	((curDate,	cur.head._2))

				curDate	+=	1.days

				//	Skip	weekends

				if	(curDate.dayOfWeek().get	>	5)	curDate	+=	2.days

		}

		filled.toArray

}

We	apply	trimToRegion	and	fillInHistory	to	the	data:

val	stocks	=	rawStocks.

		map(trimToRegion(_,	start,	end)).

		map(fillInHistory(_,	start,	end))

val	factors	=	(factors1	++	factors2).

		map(trimToRegion(_,	start,	end)).

		map(fillInHistory(_,	start,	end))

Keep	in	mind	that,	even	though	the	Scala	APIs	used	here	look	very	similar	to
Spark’s	API,	these	operations	are	executing	locally.	Each	element	of	stocks	is
an	array	of	values	at	different	time	points	for	a	particular	stock.	factors	has
the	same	structure.	All	these	arrays	should	have	equal	length,	which	we	can
verify	with:

https://github.com/sryza/spark-timeseries
https://github.com/twosigma/flint


(stocks	++	factors).forall(_.size	==	stocks(0).size)

res17:	Boolean	=	true



Determining	the	Factor	Weights
Recall	that	VaR	deals	with	losses	over	a	particular	time	horizon.	We	are	not
concerned	with	the	absolute	prices	of	instruments	but	how	those	prices	move
over	a	given	length	of	time.	In	our	calculation,	we	will	set	that	length	to	two
weeks.	The	following	function	makes	use	of	the	Scala	Collections’	sliding
method	to	transform	time	series	of	prices	into	an	overlapping	sequence	of
price	movements	over	two-week	intervals.	Note	that	we	use	10	instead	of	14	to
define	the	window	because	financial	data	does	not	include	weekends:

def	twoWeekReturns(history:	Array[(LocalDate,	Double)])

		:	Array[Double]	=	{

		history.sliding(10).

				map	{	window	=>

						val	next	=	window.last._2

						val	prev	=	window.head._2

						(next	-	prev)	/	prev

				}.toArray

}

val	stocksReturns	=	stocks.map(twoWeekReturns).toArray.toSeq	

val	factorsReturns	=	factors.map(twoWeekReturns)

Because	of	our	earlier	use	of	iterator,	stocks	is	an	iterator.
.toArray.toSeq	runs	through	it	and	collects	the	elements	in	memory	into
a	sequence.

With	these	return	histories	in	hand,	we	can	turn	to	our	goal	of	training
predictive	models	for	the	instrument	returns.	For	each	instrument,	we	want	a
model	that	predicts	its	two-week	return	based	on	the	returns	of	the	factors	over
the	same	time	period.	For	simplicity,	we	will	use	a	linear	regression	model.

To	model	the	fact	that	instrument	returns	may	be	nonlinear	functions	of	the
factor	returns,	we	can	include	some	additional	features	in	our	model	that	we
derive	from	nonlinear	transformations	of	the	factor	returns.	We	will	try	adding
two	additional	features	for	each	factor	return:	square	and	square	root.	Our
model	is	still	a	linear	model	in	the	sense	that	the	response	variable	is	a	linear
function	of	the	features.	Some	of	the	features	just	happen	to	be	determined	by
nonlinear	functions	of	the	factor	returns.	Keep	in	mind	that	this	particular



feature	transformation	is	meant	to	demonstrate	some	of	the	options	available
—	it	shouldn’t	be	perceived	as	a	state-of-the-art	practice	in	predictive	financial
modeling.

Even	though	we	will	be	carrying	out	many	regressions	—	one	for	each
instrument	—	the	number	of	features	and	data	points	in	each	regression	is
small,	meaning	that	we	don’t	need	to	make	use	of	Spark’s	distributed	linear
modeling	capabilities.	Instead,	we’ll	use	the	ordinary	least	squares	regression
offered	by	the	Apache	Commons	Math	package.	While	our	factor	data	is
currently	a	Seq	of	histories	(each	an	array	of	(DateTime,	Double)	tuples),
OLSMultipleLinearRegression	expects	data	as	an	array	of	sample	points	(in
our	case	a	two-week	interval),	so	we	need	to	transpose	our	factor	matrix:

def	factorMatrix(histories:	Seq[Array[Double]])

		:	Array[Array[Double]]	=	{

		val	mat	=	new	Array[Array[Double]](histories.head.length)

		for	(i	<-	histories.head.indices)	{

				mat(i)	=	histories.map(_(i)).toArray

		}

		mat

}

val	factorMat	=	factorMatrix(factorsReturns)

Then	we	can	tack	on	our	additional	features:

def	featurize(factorReturns:	Array[Double]):	Array[Double]	=	{

		val	squaredReturns	=	factorReturns.

				map(x	=>	math.signum(x)	*	x	*	x)

		val	squareRootedReturns	=	factorReturns.

				map(x	=>	math.signum(x)	*	math.sqrt(math.abs(x)))

		squaredReturns	++	squareRootedReturns	++	factorReturns

}

val	factorFeatures	=	factorMat.map(featurize)

And	then	we	can	fit	the	linear	models.	In	addition,	to	find	the	model	parameters
for	each	instrument,	we	can	use	the	OLSMultipleLinearRegression’s
estimateRegressionParameters	method:

import	org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression

def	linearModel(instrument:	Array[Double],

				factorMatrix:	Array[Array[Double]])

		:	OLSMultipleLinearRegression	=	{

		val	regression	=	new	OLSMultipleLinearRegression()

		regression.newSampleData(instrument,	factorMatrix)

		regression



}

val	factorWeights	=	stocksReturns.

		map(linearModel(_,	factorFeatures)).

		map(_.estimateRegressionParameters()).

		toArray

We	now	have	a	1,867×8	matrix	where	each	row	is	the	set	of	model	parameters
(coefficients,	weights,	covariants,	regressors,	or	whatever	you	wish	to	call
them)	for	an	instrument.

We	will	elide	this	analysis	for	brevity,	but	at	this	point	in	any	real-world
pipeline	it	would	be	useful	to	understand	how	well	these	models	fit	the	data.
Because	the	data	points	are	drawn	from	time	series,	and	especially	because	the
time	intervals	are	overlapping,	it	is	very	likely	that	the	samples	are
autocorrelated.	This	means	that	common	measures	like	R2	are	likely	to
overestimate	how	well	the	models	fit	the	data.	The	Breusch-Godfrey	test	is	a
standard	test	for	assessing	these	effects.	One	quick	way	to	evaluate	a	model	is
to	separate	a	time	series	into	two	sets,	leaving	out	enough	data	points	in	the
middle	so	that	the	last	points	in	the	earlier	set	are	not	autocorrelated	with	the
first	points	in	the	later	set.	Then	train	the	model	on	one	set	and	look	at	its	error
on	the	other.

http://bit.ly/2psAwB7


Sampling
With	our	models	that	map	factor	returns	to	instrument	returns	in	hand,	we	now
need	a	procedure	for	simulating	market	conditions	by	generating	random
factor	returns.	That	is,	we	need	to	decide	on	a	probability	distribution	over
factor	return	vectors	and	sample	from	it.	What	distribution	does	the	data
actually	take?	It	can	often	be	useful	to	start	answering	this	kind	of	question
visually.	A	nice	way	to	visualize	a	probability	distribution	over	continuous	data
is	a	density	plot	that	plots	the	distribution’s	domain	versus	its	PDF.	Because	we
don’t	know	the	distribution	that	governs	the	data,	we	don’t	have	an	equation
that	can	give	us	its	density	at	an	arbitrary	point,	but	we	can	approximate	it
through	a	technique	called	kernel	density	estimation.	In	a	loose	way,	kernel
density	estimation	is	a	way	of	smoothing	out	a	histogram.	It	centers	a
probability	distribution	(usually	a	normal	distribution)	at	each	data	point.	So	a
set	of	two-week-return	samples	would	result	in	200	normal	distributions,	each
with	a	different	mean.	To	estimate	the	probability	density	at	a	given	point,	it
evaluates	the	PDFs	of	all	the	normal	distributions	at	that	point	and	takes	their
average.	The	smoothness	of	a	kernel	density	plot	depends	on	its	bandwidth,	the
standard	deviation	of	each	of	the	normal	distributions.	The	GitHub	repository
comes	with	a	kernel	density	implementation	that	works	both	over	RDDs	and
local	collections.	For	brevity,	it	is	elided	here.

breeze-viz	is	a	Scala	library	that	makes	it	easy	to	draw	simple	plots.	The
following	snippet	creates	a	density	plot	from	a	set	of	samples:

import	org.apache.spark.mllib.stat.KernelDensity

import	org.apache.spark.util.StatCounter

import	breeze.plot._

def	plotDistribution(samples:	Array[Double]):	Figure	=	{

		val	min	=	samples.min

		val	max	=	samples.max

		val	stddev	=	new	StatCounter(samples).stdev

		val	bandwidth	=	1.06	*	stddev	*	math.pow(samples.size,	-0.2)	

		val	domain	=	Range.Double(min,	max,	(max	-	min)	/	100).

				toList.toArray

		val	kd	=	new	KernelDensity().

				setSample(samples.toSeq.toDS.rdd).

				setBandwidth(bandwidth)

		val	densities	=	kd.estimate(domain)

		val	f	=	Figure()

		val	p	=	f.subplot(0)



		p	+=	plot(domain,	densities)

		p.xlabel	=	"Two	Week	Return	($)"

		p.ylabel	=	"Density"

		f

}

plotDistribution(factorsReturns(0))

plotDistribution(factorsReturns(2))

We	use	what	is	known	as	“Silverman’s	rule	of	thumb,”	named	after	the
British	statistician	Bernard	Silverman,	to	pick	a	reasonable	bandwidth.

Figure	9-1	shows	the	distribution	(probability	density	function)	of	two-week
returns	for	the	S&P	500	in	our	history.

Figure	9-1.	Two-week	S&P	500	returns	distribution

Figure	9-2	shows	the	same	for	two-week	returns	of	30-year	Treasury	bonds.



Figure	9-2.	Two-week	30-year	Treasury	bond	returns	distribution

We	will	fit	a	normal	distribution	to	the	returns	of	each	factor.	Looking	for	a
more	exotic	distribution,	perhaps	with	fatter	tails,	that	more	closely	fits	the	data
is	often	worthwhile.	However,	for	the	sake	of	simplicity,	we	will	avoid	tuning
our	simulation	in	this	way.

The	simplest	way	to	sample	factors’	returns	would	be	to	fit	a	normal
distribution	to	each	of	the	factors	and	sample	from	these	distributions
independently.	However,	this	ignores	the	fact	that	market	factors	are	often
correlated.	If	the	S&P	is	down,	the	Dow	is	likely	to	be	down	as	well.	Failing	to
take	these	correlations	into	account	can	give	us	a	much	rosier	picture	of	our
risk	profile	than	its	reality.	Are	the	returns	of	our	factors	correlated?	The
Pearson’s	correlation	implementation	from	Commons	Math	can	help	us	find
out:

import	org.apache.commons.math3.stat.correlation.PearsonsCorrelation

val	factorCor	=

		new	PearsonsCorrelation(factorMat).getCorrelationMatrix().getData()

println(factorCor.map(_.mkString("\t")).mkString("\n"))

1.0							-0.3472			0.4424				0.4633	

-0.3472			1.0							-0.4777			-0.5096

0.4424				-0.4777			1.0							0.9199



0.4633				-0.5096			0.9199				1.0

Digits	truncated	to	fit	within	the	margins
Because	we	have	nonzero	elements	off	the	diagonals,	it	doesn’t	look	like	it.



The	Multivariate	Normal	Distribution
The	multivariate	normal	distribution	can	help	here	by	taking	the	correlation
information	between	the	factors	into	account.	Each	sample	from	a	multivariate
normal	is	a	vector.	Given	values	for	all	of	the	dimensions	but	one,	the
distribution	of	values	along	that	dimension	is	normal.	But,	in	their	joint
distribution,	the	variables	are	not	independent.

The	multivariate	normal	is	parameterized	with	a	mean	along	each	dimension
and	a	matrix	describing	the	covariances	between	each	pair	of	dimensions.	With
N	dimensions,	the	covariance	matrix	is	N	by	N	because	we	want	to	capture	the
covariances	between	each	pair	of	dimensions.	When	the	covariance	matrix	is
diagonal,	the	multivariate	normal	reduces	to	sampling	along	each	dimension
independently,	but	placing	nonzero	values	in	the	off-diagonals	helps	capture
the	relationships	between	variables.

The	VaR	literature	often	describes	a	step	in	which	the	factor	weights	are
transformed	(decorrelated)	so	that	sampling	can	proceed.	This	is	normally
accomplished	with	a	Cholesky	decomposition	or	eigendecomposition.	The
Apache	Commons	Math	MultivariateNormalDistribution	takes	care	of	this
step	for	us	under	the	covers	using	an	eigendecomposition.

To	fit	a	multivariate	normal	distribution	to	our	data,	first	we	need	to	find	its
sample	means	and	covariances:

import	org.apache.commons.math3.stat.correlation.Covariance

val	factorCov	=	new	Covariance(factorMat).getCovarianceMatrix().

		getData()

val	factorMeans	=	factorsReturns.

		map(factor	=>	factor.sum	/	factor.size).toArray

Then	we	can	simply	create	a	distribution	parameterized	with	them:

import	org.apache.commons.math3.distribution.MultivariateNormalDistribution

val	factorsDist	=	new	MultivariateNormalDistribution(factorMeans,

		factorCov)

To	sample	a	set	of	market	conditions	from	it:



factorsDist.sample()

res1:	Array[Double]	=	Array(-0.05782773255967754,	0.01890770078427768,

		0.029344325473062878,	0.04398266164298203)

factorsDist.sample()

res2:	Array[Double]	=	Array(-0.009840154244155741,	-0.01573733572551166,

		0.029140934507992572,	0.028227818241305904)



Running	the	Trials
With	the	per-instrument	models	and	a	procedure	for	sampling	factor	returns,
we	now	have	the	pieces	we	need	to	run	the	actual	trials.	Because	running	the
trials	is	very	computationally	intensive,	we	will	finally	turn	to	Spark	to	help	us
parallelize	them.	In	each	trial,	we	want	to	sample	a	set	of	risk	factors,	use	them
to	predict	the	return	of	each	instrument,	and	sum	all	those	returns	to	find	the
full	trial	loss.	To	achieve	a	representative	distribution,	we	want	to	run
thousands	or	millions	of	these	trials.

We	have	a	few	choices	for	how	to	parallelize	the	simulation.	We	can	parallelize
along	trials,	instruments,	or	both.	To	parallelize	along	both,	we	would	create	a
data	set	of	instruments	and	a	data	set	of	trial	parameters,	and	then	use	the
crossJoin	transformation	to	generate	a	data	set	of	all	the	pairs.	This	is	the
most	general	approach,	but	it	has	a	couple	of	disadvantages.	First,	it	requires
explicitly	creating	an	RDD	of	trial	parameters,	which	we	can	avoid	by	using
some	tricks	with	random	seeds.	Second,	it	requires	a	shuffle	operation.

Partitioning	along	instruments	would	look	something	like	this:

val	randomSeed	=	1496

val	instrumentsDS	=	...

def	trialLossesForInstrument(seed:	Long,	instrument:	Array[Double])

		:	Array[(Int,	Double)]	=	{

		...

}

instrumentsDS.flatMap(trialLossesForInstrument(randomSeed,	_)).

		reduceByKey(_	+	_)

With	this	approach,	the	data	is	partitioned	across	an	RDD	of	instruments,	and
for	each	instrument	a	flatMap	transformation	computes	and	yields	the	loss
against	every	trial.	Using	the	same	random	seed	across	all	tasks	means	that	we
will	generate	the	same	sequence	of	trials.	A	reduceByKey	sums	together	all	the
losses	corresponding	to	the	same	trials.	A	disadvantage	of	this	approach	is	that
it	still	requires	shuffling	O(|instruments|	*	|trials|)	data.

Our	model	data	for	our	few	thousand	instruments	data	is	small	enough	to	fit	in
memory	on	every	executor,	and	some	back-of-the-envelope	calculations	reveal
that	this	is	probably	still	the	case	even	with	a	million	or	so	instruments	and



hundreds	of	factors.	A	million	instruments	times	500	factors	times	the	8	bytes
needed	for	the	double	that	stores	each	factor	weight	equals	roughly	4	GB,
small	enough	to	fit	in	each	executor	on	most	modern-day	cluster	machines.
This	means	that	a	good	option	is	to	distribute	the	instrument	data	in	a	broadcast
variable.	The	advantage	of	each	executor	having	a	full	copy	of	the	instrument
data	is	that	total	loss	for	each	trial	can	be	computed	on	a	single	machine.	No
aggregation	is	necessary.

With	the	partition-by-trials	approach	(which	we	will	use),	we	start	out	with	an
RDD	of	seeds.	We	want	a	different	seed	in	each	partition	so	that	each	partition
generates	different	trials:

val	parallelism	=	1000

val	baseSeed	=	1496

val	seeds	=	(baseSeed	until	baseSeed	+	parallelism)

val	seedDS	=	seeds.toDS().repartition(parallelism)

Random	number	generation	is	a	time-consuming	and	CPU-intensive	process.
While	we	don’t	employ	this	trick	here,	it	can	often	be	useful	to	generate	a	set
of	random	numbers	in	advance	and	use	it	across	multiple	jobs.	The	same
random	numbers	should	not	be	used	within	a	single	job,	because	this	would
violate	the	Monte	Carlo	assumption	that	the	random	values	are	independently
distributed.	If	we	were	to	go	this	route,	we	would	replace	toDS	with	textFile
and	load	randomNumbersDS.

For	each	seed,	we	want	to	generate	a	set	of	trial	parameters	and	observe	the
effects	of	these	parameters	on	all	the	instruments.	Let’s	start	from	the	ground
up	by	writing	a	function	that	calculates	the	return	of	a	single	instrument
underneath	a	single	trial.	We	simply	apply	the	linear	model	that	we	trained
earlier	for	that	instrument.	The	length	of	the	instrument	array	of	regression
parameters	is	one	greater	than	the	length	of	the	trial	array,	because	the	first
element	of	the	instrument	array	contains	the	intercept	term:

def	instrumentTrialReturn(instrument:	Array[Double],

				trial:	Array[Double]):	Double	=	{

		var	instrumentTrialReturn	=	instrument(0)

		var	i	=	0

		while	(i	<	trial.length)	{	

				instrumentTrialReturn	+=	trial(i)	*	instrument(i+1)

				i	+=	1

		}



		instrumentTrialReturn

}

We	use	a	while	loop	here	instead	of	a	more	functional	Scala	construct
because	this	is	a	performance-critical	region.

Then,	to	calculate	the	full	return	for	a	single	trial,	we	simply	average	over	the
returns	of	all	the	instruments.	This	assumes	that	we’re	holding	an	equal	value
of	each	instrument	in	the	portfolio.	A	weighted	average	would	be	used	if	we
held	different	amounts	of	each	stock.

def	trialReturn(trial:	Array[Double],

				instruments:	Seq[Array[Double]]):	Double	=	{

		var	totalReturn	=	0.0

		for	(instrument	<-	instruments)	{

				totalReturn	+=	instrumentTrialReturn(instrument,	trial)

		}

		totalReturn	/	instruments.size

}

Lastly,	we	need	to	generate	a	bunch	of	trials	in	each	task.	Because	choosing
random	numbers	is	a	big	part	of	the	process,	it	is	important	to	use	a	strong
random	number	generator	that	will	take	a	very	long	time	to	repeat	itself.
Commons	Math	includes	a	Mersenne	Twister	implementation	that	is	good	for
this.	We	use	it	to	sample	from	a	multivariate	normal	distribution	as	described
previously.	Note	that	we	are	applying	the	featurize	method	that	we	defined
before	on	the	generated	factor	returns	in	order	to	transform	them	into	the
feature	representation	used	in	our	models:

import	org.apache.commons.math3.random.MersenneTwister

def	trialReturns(seed:	Long,	numTrials:	Int,

				instruments:	Seq[Array[Double]],	factorMeans:	Array[Double],

				factorCovariances:	Array[Array[Double]]):	Seq[Double]	=	{

		val	rand	=	new	MersenneTwister(seed)

		val	multivariateNormal	=	new	MultivariateNormalDistribution(

				rand,	factorMeans,	factorCovariances)

		val	trialReturns	=	new	Array[Double](numTrials)

		for	(i	<-	0	until	numTrials)	{

				val	trialFactorReturns	=	multivariateNormal.sample()

				val	trialFeatures	=	featurize(trialFactorReturns)

				trialReturns(i)	=	trialReturn(trialFeatures,	instruments)

		}

		trialReturns

}



With	our	scaffolding	complete,	we	can	use	it	to	compute	an	RDD	where	each
element	is	the	total	return	from	a	single	trial.	Because	the	instrument	data
(matrix	including	a	weight	on	each	factor	feature	for	each	instrument)	is	large,
we	use	a	broadcast	variable	for	it.	This	ensures	that	it	only	needs	to	be
deserialized	once	per	executor:

val	numTrials	=	10000000

val	trials	=	seedDS.flatMap(

		trialReturns(_,	numTrials	/	parallelism,

				factorWeights,	factorMeans,	factorCov))

trials.cache()

If	you	recall,	the	whole	reason	we’ve	been	messing	around	with	all	these
numbers	is	to	calculate	VaR.	trials	now	forms	an	empirical	distribution	over
portfolio	returns.	To	calculate	5%	VaR,	we	need	to	find	a	return	that	we	expect
to	underperform	5%	of	the	time,	and	a	return	that	we	expect	to	outperform	5%
of	the	time.	With	our	empirical	distribution,	this	is	as	simple	as	finding	the
value	that	5%	of	trials	are	worse	than	and	95%	of	trials	are	better	than.	We	can
accomplish	this	using	the	takeOrdered	action	to	pull	the	worst	5%	of	trials	into
the	driver.	Our	VaR	is	the	return	of	the	best	trial	in	this	subset:

def	fivePercentVaR(trials:	Dataset[Double]):	Double	=	{

		val	quantiles	=	trials.stat.approxQuantile("value",

				Array(0.05),	0.0)

		quantiles.head

}

val	valueAtRisk	=	fivePercentVaR(trials)

valueAtRisk:	Double	=	-0.010831826593164014

We	can	find	the	CVaR	with	a	nearly	identical	approach.	Instead	of	taking	the
best	trial	return	from	the	worst	5%	of	trials,	we	take	the	average	return	from
that	set	of	trials:

def	fivePercentCVaR(trials:	Dataset[Double]):	Double	=	{

		val	topLosses	=	trials.orderBy("value").

				limit(math.max(trials.count().toInt	/	20,	1))

		topLosses.agg("value"	->	"avg").first()(0).asInstanceOf[Double]

}

val	conditionalValueAtRisk	=	fivePercentCVaR(trials)

conditionalValueAtRisk:	Double	=	-0.09002629251426077



Visualizing	the	Distribution	of	Returns
In	addition	to	calculating	VaR	at	a	particular	confidence	level,	it	can	be	useful
to	look	at	a	fuller	picture	of	the	distribution	of	returns.	Are	they	normally
distributed?	Do	they	spike	at	the	extremities?	As	we	did	for	the	individual
factors,	we	can	plot	an	estimate	of	the	probability	density	function	for	the	joint
probability	distribution	using	kernel	density	estimation	(see	Figure	9-3).
Again,	the	supporting	code	for	calculating	the	density	estimates	in	a	distributed
fashion	(over	RDDs)	is	included	in	the	GitHub	repository	accompanying	this
book:

import	org.apache.spark.sql.functions

def	plotDistribution(samples:	Dataset[Double]):	Figure	=	{

		val	(min,	max,	count,	stddev)	=	samples.agg(

				functions.min($"value"),

				functions.max($"value"),

				functions.count($"value"),

				functions.stddev_pop($"value")

		).as[(Double,	Double,	Long,	Double)].first()

		val	bandwidth	=	1.06	*	stddev	*	math.pow(count,	-0.2)	

		//	Using	toList	before	toArray	avoids	a	Scala	bug

		val	domain	=	Range.Double(min,	max,	(max	-	min)	/	100).

				toList.toArray

		val	kd	=	new	KernelDensity().

				setSample(samples.rdd).

				setBandwidth(bandwidth)

		val	densities	=	kd.estimate(domain)

		val	f	=	Figure()

		val	p	=	f.subplot(0)

		p	+=	plot(domain,	densities)

		p.xlabel	=	"Two	Week	Return	($)"

		p.ylabel	=	"Density"

		f

}

plotDistribution(trials)

Again,	Silverman’s	rule	of	thumb.



Figure	9-3.	Two-week	returns	distribution



Evaluating	Our	Results
How	do	we	know	whether	our	estimate	is	a	good	estimate?	How	do	we	know
whether	we	should	simulate	with	a	larger	number	of	trials?	In	general,	the
error	in	a	Monte	Carlo	simulation	should	be	proportional	to	 .	This
means	that,	in	general,	quadrupling	the	number	of	trials	should	approximately
cut	the	error	in	half.

A	nice	way	to	get	a	confidence	interval	on	our	VaR	statistic	is	through
bootstrapping.	We	achieve	a	bootstrap	distribution	over	the	VaR	by	repeatedly
sampling	with	replacement	from	the	set	of	portfolio	return	results	of	our	trials.
Each	time,	we	take	a	number	of	samples	equal	to	the	full	size	of	the	trials	set
and	compute	a	VaR	from	those	samples.	The	set	of	VaRs	computed	from	all	the
times	form	an	empirical	distribution,	and	we	can	get	our	confidence	interval
by	simply	looking	at	its	quantiles.

The	following	is	a	function	that	will	compute	a	bootstrapped	confidence
interval	for	any	statistic	(given	by	the	computeStatistic	argument)	of	an	RDD.
Notice	its	use	of	Spark’s	sample	where	we	pass	true	for	its	first	argument
withReplacement,	and	1.0	for	its	second	argument	to	collect	a	number	of
samples	equal	to	the	full	size	of	the	data	set:

def	bootstrappedConfidenceInterval(

				trials:	Dataset[Double],

				computeStatistic:	Dataset[Double]	=>	Double,

				numResamples:	Int,

				probability:	Double):	(Double,	Double)	=	{

		val	stats	=	(0	until	numResamples).map	{	i	=>

				val	resample	=	trials.sample(true,	1.0)

				computeStatistic(resample)

		}.sorted

		val	lowerIndex	=	(numResamples	*	probability	/	2	-	1).toInt

		val	upperIndex	=	math.ceil(numResamples	*	(1	-	probability	/	2))

				.toInt

		(stats(lowerIndex),	stats(upperIndex))

}

Then	we	call	this	function,	passing	in	the	fivePercentVaR	function	we	defined
earlier	that	computes	the	VaR	from	an	RDD	of	trials:

bootstrappedConfidenceInterval(trials,	fivePercentVaR,	100,	.05)

...



(-0.019480970253736192,-1.4971191125093586E-4)

We	can	bootstrap	the	CVaR	as	well:

bootstrappedConfidenceInterval(trials,	fivePercentCVaR,	100,	.05)

...

(-0.10051267317397554,-0.08058996149775266)

The	confidence	interval	helps	us	understand	how	confident	our	model	is	in	its
result,	but	it	does	little	to	help	us	understand	how	well	our	model	matches
reality.	Backtesting	on	historical	data	is	a	good	way	to	check	the	quality	of	a
result.	One	common	test	for	VaR	is	Kupiec’s	proportion-of-failures	(POF)	test.
It	considers	how	the	portfolio	performed	at	many	historical	time	intervals	and
counts	the	number	of	times	the	losses	exceeded	the	VaR.	The	null	hypothesis	is
that	the	VaR	is	reasonable,	and	a	sufficiently	extreme	test	statistic	means	that	the
VaR	estimate	does	not	accurately	describe	the	data.	The	test	statistic	—	which
relies	on	p,	the	confidence	level	parameter	of	the	VaR	calculation;	x,	the
number	of	historical	intervals	over	which	the	losses	exceeded	the	VaR;	and	T,
the	total	number	of	historical	intervals	considered	—	is	computed	as:

The	following	computes	the	test	statistic	on	our	historical	data.	We	expand	out
the	logs	for	better	numerical	stability:

var	failures	=	0

for	(i	<-	stocksReturns.head.indices)	{

		val	loss	=	stocksReturns.map(_(i)).sum	/	stocksReturns.size

		if	(loss	<	valueAtRisk)	{

				failures	+=	1

		}

}

failures

...

257



val	total	=	stocksReturns.size

val	confidenceLevel	=	0.05

val	failureRatio	=	failures.toDouble	/	total

val	logNumer	=	((total	-	failures)	*	math.log1p(-confidenceLevel)	+

		failures	*	math.log(confidenceLevel))

val	logDenom	=	((total	-	failures)	*	math.log1p(-failureRatio)	+

		failures	*	math.log(failureRatio))

val	testStatistic	=	-2	*	(logNumer	-	logDenom)

...

180.3543986286574

If	we	assume	the	null	hypothesis	that	the	VaR	is	reasonable,	then	this	test
statistic	is	drawn	from	a	chi-squared	distribution	with	a	single	degree	of
freedom.	We	can	use	the	Commons	Math	ChiSquaredDistribution	to	find	the
p-value	accompanying	our	test	statistic	value:

import	org.apache.commons.math3.distribution.ChiSquaredDistribution

1	-	new	ChiSquaredDistribution(1.0).cumulativeProbability(testStatistic)

This	gives	us	a	tiny	p-value,	meaning	we	do	have	sufficient	evidence	to	reject
the	null	hypothesis	that	the	model	is	reasonable.	While	the	fairly	tight
confidence	intervals	we	computed	earlier	indicate	that	our	model	is	internally
consistent,	the	test	result	indicates	that	it	doesn’t	correspond	well	to	observed
reality.	Looks	like	we	need	to	improve	it	a	little.



Where	to	Go	from	Here
The	model	laid	out	in	this	exercise	is	a	very	rough	first	cut	of	what	would	be
used	in	an	actual	financial	institution.	In	building	an	accurate	VaR	model,	we
glossed	over	a	few	very	important	steps.	Curating	the	set	of	market	factors	can
make	or	break	a	model,	and	it	is	not	uncommon	for	financial	institutions	to
incorporate	hundreds	of	factors	in	their	simulations.	Picking	these	factors
requires	both	running	numerous	experiments	on	historical	data	and	a	heavy
dose	of	creativity.	Choosing	the	predictive	model	that	maps	market	factors	to
instrument	returns	is	also	important.	Although	we	used	a	simple	linear	model,
many	calculations	use	nonlinear	functions	or	simulate	the	path	over	time	with
Brownian	motion.

Lastly,	it	is	worth	putting	care	into	the	distribution	used	to	simulate	the	factor
returns.	Kolmogorov-Smirnoff	tests	and	chi-squared	tests	are	useful	for	testing
an	empirical	distribution’s	normality.	Q-Q	plots	are	useful	for	comparing
distributions	visually.	Usually,	financial	risk	is	better	mirrored	by	a
distribution	with	fatter	tails	than	the	normal	distribution	that	we	used.	Mixtures
of	normal	distributions	are	one	good	way	to	achieve	these	fatter	tails.
“Financial	Economics,	Fat-tailed	Distributions”,	an	article	by	Markus	Haas	and
Christian	Pigorsch,	provides	a	nice	reference	on	some	of	the	other	fat-tailed
distributions	out	there.

Banks	use	Spark	and	large-scale	data	processing	frameworks	for	calculating
VaR	with	historical	methods	as	well.	“Evaluation	of	Value-at-Risk	Models
Using	Historical	Data”,	by	Darryll	Hendricks,	provides	a	good	overview	and
performance	comparison	of	historical	VaR	methods.

Monte	Carlo	risk	simulations	can	be	used	for	more	than	calculating	a	single
statistic.	The	results	can	be	used	to	proactively	reduce	the	risk	of	a	portfolio	by
shaping	investment	decisions.	For	example,	if,	in	the	trials	with	the	poorest
returns,	a	particular	set	of	instruments	tends	to	come	up	losing	money
repeatedly,	we	might	consider	dropping	those	instruments	from	the	portfolio
or	adding	instruments	that	tend	to	move	in	the	opposite	direction	from	them.

https://bit.ly/1ACazwy
https://nyfed.org/1ACaI2O


Chapter	10.	Analyzing	Genomics
Data	and	the	BDG	Project
Uri	Laserson

So	we	need	to	shoot	our	SCHPON	[Sulfur	Carbon	Hydrogen	Phosphorous
Oxygen	Nitrogen]	...	into	the	void.
George	M.	Church

The	advent	of	next-generation	DNA	sequencing	(NGS)	technology	is	rapidly
transforming	the	life	sciences	into	a	data-driven	field.	However,	making	the
best	use	of	this	data	is	butting	up	against	a	traditional	computational	ecosystem
that	builds	on	difficult-to-use,	low-level	primitives	for	distributed	computing
(e.g.,	DRMAA	or	MPI)	and	a	jungle	of	semistructured	text-based	file	formats.

This	chapter	will	serve	three	primary	purposes.	First,	we	introduce	the	general
Spark	user	to	a	set	of	Hadoop-friendly	serialization	and	file	formats	(Avro	and
Parquet)	that	simplify	many	problems	in	data	management.	We	broadly
promote	the	use	of	these	serialization	technologies	to	achieve	compact	binary
representations,	service-oriented	architectures,	and	language	cross-
compatibility.	Second,	we	show	the	experienced	bioinformatician	how	to
perform	typical	genomics	tasks	in	the	context	of	Spark.

Specifically,	we	will	use	Spark	to	manipulate	large	quantities	of	genomics	data
to	process	and	filter	data,	build	a	model	that	predicts	transcription	factor	(TF)
binding	sites,	and	join	ENCODE	genome	annotations	against	the	1000
Genome	Project	variants.	Finally,	this	chapter	will	serve	as	a	tutorial	to	the
ADAM	project,	which	comprises	a	set	of	genomics-specific	Avro	schemas,
Spark-based	APIs,	and	command-line	tools	for	large-scale	genomics	analysis.
Among	other	applications,	ADAM	provides	a	natively	distributed
implementation	of	the	Genome	Analysis	Toolkit	(GATK)	best	practices	using
Hadoop	and	Spark.

The	genomics	portions	of	this	chapter	are	targeted	at	experienced
bioinformaticians	familiar	with	typical	problems.	However,	the	data
serialization	portions	should	be	useful	to	anyone	who	is	processing	large

https://www.encodeproject.org
http://www.internationalgenome.org
https://software.broadinstitute.org/gatk/best-practices/


amounts	of	data.	For	the	interested	novice,	a	great	introduction	to	biology	is
Eric	Lander ’s	EdX	course.	For	an	introduction	to	bioinformatics,	see	Arthur
Lesk’s	Introduction	to	Bioinformatics	(Oxford	University	Press).

Finally,	because	the	genome	implies	a	1D	coordinate	system,	many	genomics
operations	are	spatial	in	nature.	The	ADAM	project	provides	a	genomics-
targeted	API	along	with	implementations	for	performing	distributed	spatial
joins	using	the	older	RDD	interface.	Therefore,	this	chapter	continues	to	use
the	original	interface	rather	than	the	newer	Dataset	and	DataFrame	interfaces.

A	NOTE	ON	THE	USE	OF	RDDS

In	contrast	to	the	rest	of	this	book,	this	chapter	and	the	next	make	use	of	Spark’s	older	resilient
distributed	data	sets	(RDD)	API.	The	primary	reason	is	that	the	ADAM	project	has	implemented	a
number	of	join	operators	specific	for	1D	geometric	computations	that	are	common	in	genomics
processing.	These	operators	have	not	yet	been	ported	to	the	newer	Dataset	API,	though	this	is	on	the
roadmap.	Furthermore,	the	DataFrame	API	abstracts	away	more	details	about	the	distributed
computation;	porting	the	ADAM	join	operators	will	require	interfacing	with	Spark’s	query	planner.	On
the	other	hand,	this	chapter	can	be	referred	to	when	the	reader	encounters	uses	of	the	RDD	API,
either	through	other	Spark-based	libraries	or	in	legacy	code.

http://bit.ly/2qKJCcQ


Decoupling	Storage	from	Modeling
Bioinformaticians	spend	a	disproportionate	amount	of	time	worrying	about
file	formats	—	.fasta,	.fastq,	.sam,	.bam,	.vcf,	.gvcf,	.bcf,	.bed,	.gff,	.gtf,
.narrowPeak,	.wig,	.bigWig,	.bigBed,	.ped,	and	.tped,	to	name	a	few	—	not	to
mention	the	scientists	who	feel	it	is	necessary	to	specify	their	own	custom
format	for	their	custom	tool.	On	top	of	that,	many	of	the	format	specifications
are	incomplete	or	ambiguous	(which	makes	it	hard	to	ensure	implementations
are	consistent	or	compliant)	and	specify	ASCII-encoded	data.	ASCII	data	is
very	common	in	bioinformatics,	but	it	is	inefficient	and	compresses	relatively
poorly	—	this	is	starting	to	be	addressed	by	community	efforts	to	improve	the
specs.	In	addition,	the	data	must	always	be	parsed,	necessitating	additional
compute	cycles.	This	is	particularly	troubling	because	all	of	these	file	formats
essentially	store	just	a	few	common	object	types:	an	aligned	sequence	read,	a
called	genotype,	a	sequence	feature,	and	a	phenotype.	(The	term	sequence
feature	is	slightly	overloaded	in	genomics,	but	in	this	chapter	we	mean	it	in	the
sense	of	an	element	from	a	track	of	the	UCSC	Genome	Browser.)	Libraries
like	biopython	are	popular	because	they	are	chock-full-o’	parsers	(e.g.,
Bio.SeqIO)	that	attempt	to	read	all	the	file	formats	into	a	small	number	of
common	in-memory	models	(e.g.,	Bio.Seq,	Bio.SeqRecord,	Bio.SeqFeature).

We	can	solve	all	of	these	problems	in	one	shot	using	a	serialization	framework
like	Apache	Avro.	The	key	lies	in	Avro’s	separation	of	the	data	model	(i.e.,	an
explicit	schema)	from	the	underlying	storage	file	format	and	also	the
language’s	in-memory	representation.	Avro	specifies	how	data	of	a	certain
type	should	be	communicated	between	processes,	whether	that’s	between
running	processes	over	the	Internet,	or	a	process	trying	to	write	the	data	into	a
particular	file	format.	For	example,	a	Java	program	that	uses	Avro	can	write
the	data	into	multiple	underlying	file	formats	that	are	all	compatible	with
Avro’s	data	model.	This	allows	each	process	to	stop	worrying	about
compatibility	with	multiple	file	formats:	the	process	only	needs	to	know	how
to	read	Avro,	and	the	filesystem	needs	to	know	how	to	supply	Avro.

Let’s	take	the	sequence	feature	as	an	example.	We	begin	by	specifying	the
desired	schema	for	the	object	using	the	Avro	interface	definition	language

https://github.com/samtools/hts-specs
http://biopython.org


(IDL):

enum	Strand	{

		Forward,

		Reverse,

		Independent

}

record	SequenceFeature	{

		string	featureId;

		string	featureType;	

		string	chromosome;

		long	startCoord;

		long	endCoord;

		Strand	strand;

		double	value;

		map<string>	attributes;

}

For	example,	“conservation,”	“centipede,”	“gene”
This	data	type	could	be	used	to	encode,	for	example,	conservation	level,	the
presence	of	a	promoter	or	ribosome	binding	site,	a	TF	binding	site,	and	so	on
at	a	particular	location	in	the	genome.	One	way	to	think	about	it	is	a	binary
version	of	JSON	but	more	restricted	and	with	higher	performance.	Given	a
particular	data	schema,	the	Avro	spec	then	determines	the	precise	binary
encoding	for	the	object	so	that	it	can	be	easily	communicated	between
processes	(even	if	written	in	different	programing	languages),	over	the
network,	or	onto	disk	for	storage.	The	Avro	project	includes	modules	for
processing	Avro-encoded	data	from	many	languages,	including	Java,	C/C++,
Python,	and	Perl;	after	that,	the	language	is	free	to	store	the	object	in	memory
in	whichever	way	is	deemed	most	advantageous.	The	separation	of	data
modeling	from	the	storage	format	provides	another	level	of
flexibility/abstraction;	Avro	data	can	be	stored	as	Avro-serialized	binary
objects	(Avro	container	file),	in	a	columnar	file	format	for	fast	queries
(Parquet	file),	or	as	text	JSON	data	for	maximum	flexibility	(minimum
efficiency).	Finally,	Avro	supports	schema	evolution,	allowing	the	user	to	add
new	fields	as	they	become	necessary,	while	the	software	gracefully	deals	with
new/old	versions	of	the	schema.

Overall,	Avro	is	an	efficient	binary	encoding	that	allows	you	to	easily	specify
evolvable	data	schemas,	process	the	same	data	from	many	programming
languages,	and	store	the	data	using	many	formats.	Deciding	to	store	your	data



using	Avro	schemas	frees	you	from	perpetually	working	with	more	and	more
custom	data	formats,	while	simultaneously	increasing	the	performance	of	your
computations.

SERIALIZATION/RPC	FRAMEWORKS

There	exist	a	large	number	of	serialization	frameworks	in	the	wild.	The	most	commonly	used
frameworks	in	the	big	data	community	are	Apache	Avro,	Apache	Thrift,	and	Google’s	Protocol
Buffers	(protobuf).	At	the	core,	they	all	provide	an	interface	definition	language	for	specifying	the
schemas	of	object/message	types,	and	they	all	compile	into	a	variety	of	programming	languages.	On
top	of	IDL,	Thrift	also	adds	a	way	to	specify	RPCs.	(Google’s	RPC	framework	for	protobuf	has
been	open-sourced	as	gRPC.)	Finally,	on	top	of	IDL	and	RPC,	Avro	adds	a	file	format	specification
for	storing	the	data	on-disk.	Google	more	recently	released	a	“serialization”	framework	that	uses	the
same	byte	representation	on-the-wire	and	in-memory,	effectively	eliminating	the	expensive
serialization	step.

It’s	difficult	to	make	generalizations	about	which	framework	is	appropriate	in	what	circumstances
because	they	all	support	different	languages	and	have	different	performance	characteristics	for	the
various	languages.

The	particular	SequenceFeature	model	used	in	the	preceding	example	is	a	bit
simplistic	for	real	data,	but	the	Big	Data	Genomics	(BDG)	project	has	already
defined	Avro	schemas	to	represent	the	following	objects,	as	well	as	many
others:

AlignmentRecord	for	reads

Variant	for	known	genome	variants	and	metadata

Genotype	for	a	called	genotype	at	a	particular	locus

Feature	for	a	sequence	feature	(annotation	on	a	genome	segment)

The	actual	schemas	can	be	found	in	the	bdg-formats	GitHub	repo.	The	BDG
formats	can	function	as	a	replacement	of	the	ubiquitous	“legacy”	formats	(like
BAM	and	VCF),	but	more	commonly	function	as	high-performance
“intermediate”	formats.	(The	original	goal	of	these	BDG	formats	was	to
replace	the	use	of	BAM	and	VCF,	but	their	stubborn	ubiquity	has	proved	this
goal	to	be	difficult.)	The	Global	Alliance	for	Genomics	and	Health	has	also
developed	its	own	set	of	schemas	using	Protocol	Buffers.	Hopefully,	this	will
not	turn	into	its	own	situation,	where	there	is	a	proliferation	of	competing
schemas.	Even	so,	Avro	provides	many	performance	and	data	modeling

http://bdgenomics.org/
https://github.com/bigdatagenomics/bdg-formats
https://github.com/ga4gh/schemas
https://xkcd.com/927/


benefits	over	the	custom	ASCII	status	quo.	In	the	remainder	of	the	chapter,
we’ll	use	some	of	the	BDG	schemas	to	accomplish	some	typical	genomics
tasks.



Ingesting	Genomics	Data	with	the	ADAM	CLI

This	chapter	makes	heavy	use	of	the	ADAM	project	for	genomics	on	Spark.	The	project	is
under	heavy	development,	including	the	documentation.	If	you	run	into	problems,	make	sure
to	check	the	latest	README	files	on	GitHub,	the	GitHub	issue	tracker,	or	the	adam-
developers	mailing	list.

BDG’s	core	set	of	genomics	tools	is	called	ADAM.	Starting	from	a	set	of
mapped	reads,	this	core	includes	tools	that	can	perform	mark-duplicates,	base
quality	score	recalibration,	indel	realignment,	and	variant	calling,	among	other
tasks.	ADAM	also	contains	a	command-line	interface	that	wraps	the	core	for
ease	of	use.	In	contrast	to	HPC,	these	command-line	tools	know	about	Hadoop
and	HDFS,	and	many	of	them	can	automatically	parallelize	across	a	cluster
without	having	to	split	files	or	schedule	jobs	manually.

We’ll	start	by	building	ADAM	like	the	README	tells	us	to:

git	clone	https://github.com/bigdatagenomics/adam.git	&&	cd	adam

export	"MAVEN_OPTS=-Xmx512m	-XX:MaxPermSize=128m"

mvn	clean	package	-DskipTests

Alternatively,	download	one	of	the	ADAM	releases	from	the	GitHub	release
page.

ADAM	comes	with	a	submission	script	that	facilitates	interfacing	with	Spark’s
spark-submit	script;	the	easiest	way	to	use	it	is	probably	to	alias	it:

export	ADAM_HOME=path/to/adam

alias	adam-submit="$ADAM_HOME/bin/adam-submit"

At	this	point,	you	should	be	able	to	run	ADAM	from	the	command	line	and	get
the	usage	message.	As	noted	in	the	usage	message	below,	Spark	arguments	are
given	before	ADAM-specific	arguments.

$	adam-submit

Using	ADAM_MAIN=org.bdgenomics.adam.cli.ADAMMain

[...]



							e									888~-_										e													e				e

						d8b								888			\								d8b											d8b		d8b

					/Y88b							888				|						/Y88b									d888bdY88b

				/		Y88b						888				|					/		Y88b							/	Y88Y	Y888b

			/____Y88b					888			/					/____Y88b					/			YY			Y888b

		/						Y88b				888_-~					/						Y88b			/										Y888b

Usage:	adam-submit	[<spark-args>	--]	<adam-args>

Choose	one	of	the	following	commands:

ADAM	ACTIONS

										countKmers	:	Counts	the	k-mers/q-mers	from	a	read	dataset.

				countContigKmers	:	Counts	the	k-mers/q-mers	from	a	read	dataset.

											transform	:	Convert	SAM/BAM	to	ADAM	format	and	optionally	perform...

			transformFeatures	:	Convert	a	file	with	sequence	features	into	correspondin...

									mergeShards	:	Merges	the	shards	of	a	file

						reads2coverage	:	Calculate	the	coverage	from	a	given	ADAM	file

[...]

You	may	have	to	set	some	environment	variables	for	this	to	succeed,	such	as
SPARK_HOME	and	HADOOP_CONF_DIR.

We’ll	start	by	taking	a	.bam	file	containing	some	mapped	NGS	reads,
converting	them	to	the	corresponding	BDG	format	(AlignedRecord	in	this
case),	and	saving	them	to	HDFS.	First,	we	get	our	hands	on	a	suitable	.bam	file
and	put	it	in	HDFS:

#	Note:	this	file	is	16	GB

curl	-O	ftp://ftp.ncbi.nih.gov/1000genomes/ftp/phase3/data\

/HG00103/alignment/HG00103.mapped.ILLUMINA.bwa.GBR\

.low_coverage.20120522.bam

#	or	using	Aspera	instead	(which	is	*much*	faster)

ascp	-i	path/to/asperaweb_id_dsa.openssh	-QTr	-l	10G	\

anonftp@ftp.ncbi.nlm.nih.gov:/1000genomes/ftp/phase3/data\

/HG00103/alignment/HG00103.mapped.ILLUMINA.bwa.GBR\

.low_coverage.20120522.bam	.

hadoop	fs	-put	HG00103.mapped.ILLUMINA.bwa.GBR\

.low_coverage.20120522.bam	/user/ds/genomics

We	can	then	use	the	ADAM	transform	command	to	convert	the	.bam	file	to
Parquet	format	(described	in	“Parquet	Format	and	Columnar	Storage”).	This
would	work	both	on	a	cluster	and	in	local	mode:

adam-submit	\

		--master	yarn	\	

		--deploy-mode	client	\

		--driver-memory	8G	\

		--num-executors	6	\

		--executor-cores	4	\

		--executor-memory	12G	\



		--	\

		transform	\	

		/user/ds/genomics/HG00103.mapped.ILLUMINA.bwa.GBR\

.low_coverage.20120522.bam	\

		/user/ds/genomics/reads/HG00103

Example	Spark	args	for	running	on	YARN

The	ADAM	subcommand	itself
This	should	kick	off	a	pretty	large	amount	of	output	to	the	console,	including
the	URL	to	track	the	progress	of	the	job.	Let’s	see	what	we’ve	generated:

$	hadoop	fs	-du	-h	/user/ds/genomics/reads/HG00103

0								0								ch10/reads/HG00103/_SUCCESS

8.6	K				25.7	K			ch10/reads/HG00103/_common_metadata

462.0	K		1.4	M				ch10/reads/HG00103/_metadata

1.5	K				4.4	K				ch10/reads/HG00103/_rgdict.avro

17.7	K			53.2	K			ch10/reads/HG00103/_seqdict.avro

103.1	M		309.3	M		ch10/reads/HG00103/part-r-00000.gz.parquet

102.9	M		308.6	M		ch10/reads/HG00103/part-r-00001.gz.parquet

102.7	M		308.2	M		ch10/reads/HG00103/part-r-00002.gz.parquet

[...]

106.8	M		320.4	M		ch10/reads/HG00103/part-r-00126.gz.parquet

12.4	M			37.3	M			ch10/reads/HG00103/part-r-00127.gz.parquet

The	resulting	data	set	is	the	concatenation	of	all	the	files	in	the
/user/ds/genomics/reads/HG00103/	directory,	where	each	part-*.parquet	file	is
the	output	from	one	of	the	Spark	tasks.	You’ll	also	notice	that	the	data	has	been
compressed	more	efficiently	than	the	initial	.bam	file	(which	is	gzipped
underneath)	thanks	to	the	columnar	storage	(see	“Parquet	Format	and
Columnar	Storage”).

$	hadoop	fs	-du	-h	"/user/ds/genomics/HG00103.*.bam"

15.9	G		/user/ds/genomics/HG00103.	[...]	.bam

$	hadoop	fs	-du	-h	-s	/user/ds/genomics/reads/HG00103

12.8	G		/user/ds/genomics/reads/HG00103

Let’s	see	what	one	of	these	objects	looks	like	in	an	interactive	session.	First,	we
start	up	the	Spark	shell	using	the	ADAM	helper	script.	It	takes	the	same
arguments/options	as	the	default	Spark	scripts,	but	loads	all	of	the	JARs	that
are	necessary.	In	the	following	example,	we	are	running	Spark	on	YARN:

export	SPARK_HOME=/path/to/spark



$ADAM_HOME/bin/adam-shell

[...]

Welcome	to

						____														__

					/	__/__		___	_____/	/__

				_\	\/	_	\/	_	`/	__/		'_/

			/___/	.__/\_,_/_/	/_/\_\			version	2.0.2

						/_/

Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	[...],	Java	1.8.0_112)

Type	in	expressions	to	have	them	evaluated.

Type	:help	for	more	information.

scala>

Note	that	when	you’re	working	on	YARN,	the	interactive	Spark	shell	requires
yarn-client	deploy	mode,	so	that	the	driver	is	executed	locally.	It	may	also	be
necessary	to	set	either	HADOOP_CONF_DIR	or	YARN_CONF_DIR	appropriately.	Now
we’ll	load	the	aligned	read	data	as	an	RDD[AlignmentRecord]:

import	org.bdgenomics.adam.rdd.ADAMContext._

val	readsRDD	=	sc.loadAlignments("/user/ds/genomics/reads/HG00103")

readsRDD.rdd.first()

This	may	print	some	logging	output	along	with	the	result	itself	(reformatted
for	clarity):

res3:	org.bdgenomics.formats.avro.AlignmentRecord	=	{

		"readInFragment":	0,	"contigName":	"1",	"start":	9992,

		"oldPosition":	null,	"end":	10091,	"mapq":	25,

		"readName":	"SRR062643.12466352",

		"sequence":	"CTCTTCCGATCTCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAA

CCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT",

		"qual":	"##@@BA:36<FBGCBBD>AHHB@4DD@B;0DEF6A9EDC6>9CCC@9@IIH@I8IIC4

@GH=HGHCIHHHGAGABEGAGG@EGAFHGFFEEE?DEFDDA.",

		"cigar":	"1S99M",	"oldCigar":	null,	"basesTrimmedFromStart":	0,

		"basesTrimmedFromEnd":	0,	"readPaired":	true,	"properPair":	false,

		"readMapped":	true,	"mateMapped":	false,

		"failedVendorQualityChecks":	false,	"duplicateRead":	false,

		"readNegativeStrand":	true,	"mateNegativeStrand":	true,

		"primaryAlignment":	true,	"secondaryAlignment":	false,

		"supplementaryAlignment":	false,	"mis...

You	may	get	a	different	read,	because	the	partitioning	of	the	data	may	be
different	on	your	cluster,	so	there	is	no	guarantee	which	read	will	come	back
first.

Now	we	can	interactively	ask	questions	about	our	data	set,	all	while	executing
the	computations	across	a	cluster	in	the	background.	How	many	reads	do	we



have	in	this	data	set?

readsRDD.rdd.count()

...

res16:	Long	=	160397565

Do	the	reads	in	this	data	set	derive	from	all	human	chromosomes?

val	uniq_chr	=	(readsRDD.rdd

		.map(_.getContigName)

		.distinct()

		.collect())

uniq_chr.sorted.foreach(println)

...

1

10

11

12

[...]

GL000249.1

MT

NC_007605

X

Y

hs37d5

Yep,	we	observe	reads	from	chromosomes	1	through	22,	X	and	Y,	along	with
some	other	chromosomal	chunks	that	are	not	part	of	the	“main”	chromosomes
or	whose	locations	are	unknown.	Let’s	analyze	the	statement	a	little	more
closely:

val	uniq_chr	=	(readsRDD	

		.rdd	

		.map(_.getContigName)	

		.distinct()	

		.collect())	

AlignedReadRDD:	an	ADAM	type	that	contains	the	RDD	that	contains	all	our
data.

RDD[AlignmentRecord]:	the	underlying	Spark	RDD.

RDD[String]:	from	each	AlignmentRecord	object,	we	extract	the	contig
name.	(A	“contig”	is	basically	equivalent	to	a	“chromosome.”)



RDD[String]:	this	will	cause	a	reduce/shuffle	to	aggregate	all	the	distinct
contig	names;	should	be	small,	but	still	an	RDD.

Array[String]:	this	triggers	the	computation	and	brings	the	data	in	the
RDD	back	to	the	client	app	(the	shell).

For	a	more	clinical	example,	say	we	are	testing	an	individual’s	genome	to
check	whether	they	carry	any	gene	variants	that	put	them	at	risk	for	having	a
child	with	cystic	fibrosis	(CF).	Our	genetic	test	uses	next-generation	DNA
sequencing	to	generate	reads	from	multiple	relevant	genes,	such	as	the	CFTR
gene	(whose	mutations	can	cause	CF).	After	running	our	data	through	our
genotyping	pipeline,	we	determine	that	the	CFTR	gene	appears	to	have	a
premature	stop	codon	that	destroys	its	function.	However,	this	mutation	has
never	been	reported	before	in	HGMD,	nor	is	it	in	the	Sickkids	CFTR	database,
which	aggregates	CF	gene	variants.	We	want	to	go	back	to	the	raw	sequencing
data	to	see	if	the	potentially	deleterious	genotype	call	is	a	false	positive.	To	do
so,	we	need	to	manually	analyze	all	the	reads	that	map	to	that	variant	locus,	say,
chromosome	7	at	117149189	(see	Figure	10-1):

val	cftr_reads	=	(readsRDD.rdd

		.filter(_.getContigName	==	"7")

		.filter(_.getStart	<=	117149189)

		.filter(_.getEnd	>	117149189)

		.collect())

cftr_reads.length	//	cftr_reads	is	a	local	Array[AlignmentRecord]

...

res2:	Int	=	9

http://www.hgmd.cf.ac.uk
http://www.genet.sickkids.on.ca


Figure	10-1.	IGV	visualization	of	the	HG00103	at	chr7:117149189	in	the	CFTR	gene

It	is	now	possible	to	manually	inspect	these	nine	reads,	or	process	them
through	a	custom	aligner,	for	example,	and	check	whether	the	reported
pathogenic	variant	is	a	false	positive.	Exercise	for	the	reader:	what	is	the
average	coverage	on	chromosome	7?	(It’s	definitely	too	low	for	reliably
making	a	genotype	call	at	a	given	position.)

Say	we’re	running	a	clinical	lab	that	is	performing	such	carrier	screening	as	a
service	to	clinicians.	Archiving	the	raw	data	using	Hadoop	ensures	that	the	data
stays	relatively	warm	(compared	with,	say,	tape	archive).	In	addition	to	having
a	reliable	system	for	actually	performing	the	data	processing,	we	can	easily
access	all	of	the	past	data	for	quality	control	(QC)	or	for	cases	where	there
need	to	be	manual	interventions,	like	the	CFTR	example	presented	earlier.	In
addition	to	the	rapid	access	to	the	totality	of	the	data,	the	centrality	also	makes
it	easy	to	perform	large	analytical	studies,	like	population	genetics,	large-scale
QC	analyses,	and	so	on.



Parquet	Format	and	Columnar	Storage
In	the	previous	section,	we	saw	how	we	can	manipulate	a	potentially	large
amount	of	sequencing	data	without	worrying	about	the	specifics	of	the
underlying	storage	or	the	parallelization	of	the	execution.	However,	it’s	worth
noting	that	the	ADAM	project	makes	use	of	the	Parquet	file	format,	which
confers	some	considerable	performance	advantages	that	we	introduce	here.

Parquet	is	an	open	source	file	format	specification	and	a	set	of	reader/writer
implementations	that	we	recommend	for	general	use	for	data	that	will	be	used
in	analytical	queries	(write	once,	read	many	times).	It	is	largely	based	on	the
underlying	data	storage	format	used	in	Google’s	Dremel	system	(see	“Dremel:
Interactive	Analysis	of	Web-scale	Datasets”	Proc.	VLDB,	2010,	by	Melnik	et
al.),	and	has	a	data	model	that	is	compatible	with	Avro,	Thrift,	and	Protocol
Buffers.	Specifically,	it	supports	most	of	the	common	database	types	(int,
double,	string,	etc.),	along	with	arrays	and	records,	including	nested	types.
Significantly,	it	is	a	columnar	file	format,	meaning	that	values	for	a	particular
column	from	many	records	are	stored	contiguously	on	disk	(see	Figure	10-2).
This	physical	data	layout	allows	for	far	more	efficient	data
encoding/compression,	and	significantly	reduces	query	times	by	minimizing
the	amount	of	data	that	must	be	read/deserialized.	Parquet	supports	specifying
different	compression	schemes	for	each	column,	as	well	as	column-specific
encoding	schemes	such	as	run-length	encoding,	dictionary	encoding,	and	delta
encoding.

Another	useful	feature	of	Parquet	for	increasing	performance	is	predicate
pushdown.	A	predicate	is	some	expression	or	function	that	evaluates	to	true	or
false	based	on	the	data	record	(or	equivalently,	the	expressions	in	a	SQL
WHERE	clause).	In	our	earlier	CFTR	query,	Spark	had	to	deserialize/materialize
the	each	AlignmentRecord	before	deciding	whether	or	not	it	passes	the
predicate.	This	leads	to	a	significant	amount	of	wasted	I/O	and	CPU	time.	The
Parquet	reader	implementations	allow	us	to	provide	a	predicate	class	that	only
deserializes	the	necessary	columns	for	making	the	decision,	before
materializing	the	full	record.

http://bit.ly/2qKpnw4
http://bit.ly/2qKKkqG


Figure	10-2.	Differences	between	a	row-major	and	column-major	data	layout

For	example,	to	implement	our	CFTR	query	using	predicate	pushdown,	we
must	first	define	a	suitable	predicate	class	that	tests	whether	the
AlignmentRecord	is	in	the	target	locus:

import	org.apache.parquet.filter2.dsl.Dsl._

val	chr	=	BinaryColumn("contigName")

val	start	=	LongColumn("start")

val	end	=	LongColumn("end")

val	cftrLocusPredicate	=	(

		chr	===	"7"	&&	start	<=	117149189	&&	end	>=	117149189)	



See	the	documentation	for	more	info	on	the	DSL.	Note	we	use	===	instead
of	==.

Because	we	use	Parquet-specific	features,	we	must	load	the	data	explicitly	with
the	Parquet	reader:

val	readsRDD	=	sc.loadParquetAlignments(

		"/user/ds/genomics/reads/HG00103",

		Some(cftrLocusPredicate))

This	should	execute	faster	because	it	no	longer	must	materialize	all	of	the
AlignmentRecord	objects.



Predicting	Transcription	Factor	Binding	Sites	from
ENCODE	Data
In	this	example,	we	will	use	publicly	available	sequence	feature	data	to	build	a
simple	model	for	transcription	factor	binding.	TFs	are	proteins	that	bind	to
specific	DNA	sequences	in	the	genome	and	help	control	the	expression	of
different	genes.	As	a	result,	they	are	critical	in	determining	the	phenotype	of	a
particular	cell,	and	are	involved	in	many	physiological	and	disease	processes.
ChIP-seq	is	an	NGS-based	assay	that	allows	the	genome-wide	characterization
of	binding	sites	for	a	particular	TF	in	a	particular	cell/tissue	type.	However,	in
addition	to	ChIP-seq’s	cost	and	technical	difficulty,	it	requires	a	separate
experiment	for	each	tissue/TF	pair.	In	contrast,	DNase-seq	is	an	assay	that	finds
regions	of	open-chromatin	genome-wide,	and	only	needs	to	be	performed
once	per	tissue	type.	Instead	of	assaying	TF	binding	sites	by	performing	a
ChIP-seq	experiment	for	each	tissue/TF	combination,	we’d	like	to	predict	TF
binding	sites	in	a	new	tissue	type	assuming	only	the	availability	of	DNase-seq
data.

In	particular,	we	will	predict	the	binding	sites	for	the	CTCF	TF	using	DNase-
seq	data	along	with	known	sequence	motif	data	(from	HT-SELEX)	and	other
data	from	the	publicly	available	ENCODE	data	set.	We	have	chosen	six
different	cell	types	that	have	available	DNase-seq	and	CTCF	ChIP-seq	data	for
training.	A	training	example	will	be	a	DNase	hypersensitivity	(HS)	peak	(a
segment	of	the	genome),	and	the	binary	label	for	whether	the	TF	is
bound/unbound	will	be	derived	from	the	ChIP-seq	data.

To	summarize	the	overall	data	flow:	the	main	training/test	examples	will	be
derived	from	the	DNase-seq	data.	Each	region	of	open-chromatin	(an	interval
on	the	genome)	will	be	used	to	generate	a	prediction	of	whether	a	particular
TF	in	a	particular	tissue	type	will	be	bound	there.	To	do	so,	we	spatially	join
the	ChIP-seq	data	to	the	DNase-seq	data;	every	overlap	is	a	positive	label	for
the	DNase	seq	objects.	Finally,	to	improve	the	prediction	accuracy,	we	generate
some	additional	features	at	each	interval	in	the	DNase-seq	data,	such	as
conservation	scores	(from	the	phylop	data	set),	distance	to	a	transcription	start
site	(using	the	Gencode	data	set),	and	how	well	the	sequence	of	the	DNase-seq

http://bit.ly/2qjsTNL
https://www.encodeproject.org


interval	matches	the	known	binding	motif	of	the	TF	(using	an	empirically
determined	position	weight	matrix).	In	almost	all	cases,	the	features	are	added
into	the	training	examples	by	performing	a	spatial	join	(with	a	possible
aggregation).

We	will	use	data	from	the	following	cell	lines:

GM12878
Commonly	studied	lymphoblastoid	cell	line

K562
Female	chronic	myelogenous	leukemia

BJ
Skin	fibroblast

HEK293
Embryonic	kidney

H54
Glioblastoma

HepG2
Hepatocellular	carcinoma

First,	we	download	the	DNase	data	for	each	cell	line	in	.narrowPeak	format:

hadoop	fs	-mkdir	/user/ds/genomics/dnase

curl	-s	-L	<...DNase	URL...>	\	

		|	gunzip	\	

		|	hadoop	fs	-put	-	/user/ds/genomics/dnase/sample.DNase.narrowPeak

[...]

See	accompanying	code	repo	for	actual	curl	commands.

Streaming	decompression.
Next,	we	download	the	ChIP-seq	data	for	the	CTCF	TF,	also	in	.narrowPeak
format,	and	the	GENCODE	data,	in	GTF	format:



hadoop	fs	-mkdir	/user/ds/genomics/chip-seq

curl	-s	-L	<...ChIP-seq	URL...>	\	

		|	gunzip	\

		|	hadoop	fs	-put	-	/user/ds/genomics/chip-seq/samp.CTCF.narrowPeak

[...]

See	accompanying	code	repo	for	actual	curl	commands
Note	how	we	unzip	the	stream	of	data	with	gunzip	on	the	way	to	depositing	it
in	HDFS.	Now	we	download	the	actual	human	genome	sequence,	which	is	used
to	evaluate	a	position	weight	matrix	to	generate	one	of	the	features:

#	the	hg19	human	genome	reference	sequence

curl	-s	-L	-O	\

		"http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit"

Finally,	the	conservation	data	is	available	in	fixed	wiggle	format,	which	is
difficult	to	read	as	a	splittable	file.	Specifically,	it	is	not	“splittable”	because	it
is	very	difficult	to	enter	the	file	at	an	arbitrary	location	and	start	reading
records.	This	is	because	the	wiggle	format	intersperses	data	records	with	some
metadata	that	describes	the	current	genome	location.	It	is	not	possible	to	predict
how	far	back	in	a	file	a	particular	task	must	read	in	order	to	obtain	the
metadata	about	the	contig	coordinates.	Therefore,	we	convert	the	.wigFix	data
to	BED	format	using	the	BEDOPS	tool	on	the	way	into	HDFS	as	well:

hadoop	fs	-mkdir	/user/ds/genomics/phylop

for	i	in	$(seq	1	22);	do

				curl	-s	-L	<...phyloP.chr$i	URL...>	\	

						|	gunzip	\

						|	wig2bed	-d	\	

						|	hadoop	fs	-put	-	"/user/ds/genomics/phylop/chr$i.phyloP.bed"

done

[...]

See	accompanying	code	repo	for	actual	curl	commands

This	command	is	from	the	BEDOPS	CLI.	It’s	easy	to	write	your	own
Python	script	as	well

Finally,	we	perform	a	one-time	conversion	of	the	phyloP	data	from	the	text-
based	.bed	format	to	Parquet	in	a	Spark	shell:



import	org.bdgenomics.adam.rdd.ADAMContext._

(sc

		.loadBed("/user/ds/genomics/phylop_text")

		.saveAsParquet("/user/ds/genomics/phylop"))

From	all	of	this	raw	data,	we	want	to	generate	a	training	set	with	a	schema	like
the	following:

1.	 Chromosome

2.	 Start

3.	 End

4.	 Highest	TF	motif	position	weight	matrix	(PWM)	score

5.	 Average	phyloP	conservation	score

6.	 Minimum	phyloP	conservation	score

7.	 Maximum	phyloP	conservation	score

8.	 Distance	to	closest	transcription	start	site	(TSS)

9.	 TF	identity	(always	“CTCF”	in	this	case)

10.	 Cell	line

11.	 TF	binding	status	(boolean;	the	target	variable)

This	data	set	can	easily	be	converted	into	an	RDD[LabeledPoint]	to	carry	into	a
machine	learning	library.	Since	we	need	to	generate	the	data	for	multiple	cell
lines,	we	will	define	an	RDD	for	each	cell	line	individually	and	concatenate
them	at	the	end:

val	cellLines	=	Vector(

		"GM12878",	"K562",	"BJ",	"HEK293",	"H54",	"HepG2")

val	dataByCellLine	=	cellLines.map(cellLine	=>	{	//	For	each	cell	line…

		//	…generate	an	RDD	suitable	for	conversion

		//	to	RDD[LabeledPoint]

})

//	Concatenate	the	RDDs	and	carry	through	into	MLlib,	for	example

Before	we	start,	we	load	some	data	that	will	be	used	throughout	the



computation,	including	conservation,	transcription	start	sites,	the	human
genome	reference	sequence,	and	the	CTCF	PWM	as	derived	from	HT-SELEX.
We	also	define	a	couple	of	utility	functions	that	will	be	used	to	generate	the
PWM	and	TSS	features:

val	hdfsPrefix	=	"/user/ds/genomics"

val	localPrefix	=	"/user/ds/genomics"

//	Set	up	broadcast	variables	for	computing	features	along	with	some

//	utility	functions

//	Load	the	human	genome	reference	sequence

val	bHg19Data	=	sc.broadcast(

		new	TwoBitFile(

				new	LocalFileByteAccess(

						new	File(Paths.get(localPrefix,	"hg19.2bit").toString))))

//	fn	for	finding	closest	transcription	start	site

//	naive;	exercise	for	reader:	make	this	faster

def	distanceToClosest(loci:	Vector[Long],	query:	Long):	Long	=	{

		loci.map(x	=>	math.abs(x	-	query)).min

}

//	CTCF	PWM	from	https://dx.doi.org/10.1016/j.cell.2012.12.009

//	generated	with	genomics/src/main/python/pwm.py

val	bPwmData	=	sc.broadcast(Vector(

		Map('A'->0.4553,'C'->0.0459,'G'->0.1455,'T'->0.3533),

		Map('A'->0.1737,'C'->0.0248,'G'->0.7592,'T'->0.0423),

		Map('A'->0.0001,'C'->0.9407,'G'->0.0001,'T'->0.0591),

		Map('A'->0.0051,'C'->0.0001,'G'->0.9879,'T'->0.0069),

		Map('A'->0.0624,'C'->0.9322,'G'->0.0009,'T'->0.0046),

		Map('A'->0.0046,'C'->0.9952,'G'->0.0001,'T'->0.0001),

		Map('A'->0.5075,'C'->0.4533,'G'->0.0181,'T'->0.0211),

		Map('A'->0.0079,'C'->0.6407,'G'->0.0001,'T'->0.3513),

		Map('A'->0.0001,'C'->0.9995,'G'->0.0002,'T'->0.0001),

		Map('A'->0.0027,'C'->0.0035,'G'->0.0017,'T'->0.9921),

		Map('A'->0.7635,'C'->0.0210,'G'->0.1175,'T'->0.0980),

		Map('A'->0.0074,'C'->0.1314,'G'->0.7990,'T'->0.0622),

		Map('A'->0.0138,'C'->0.3879,'G'->0.0001,'T'->0.5981),

		Map('A'->0.0003,'C'->0.0001,'G'->0.9853,'T'->0.0142),

		Map('A'->0.0399,'C'->0.0113,'G'->0.7312,'T'->0.2177),

		Map('A'->0.1520,'C'->0.2820,'G'->0.0082,'T'->0.5578),

		Map('A'->0.3644,'C'->0.3105,'G'->0.2125,'T'->0.1127)))

//	compute	a	motif	score	based	on	the	TF	PWM

def	scorePWM(ref:	String):	Double	=	{

		val	score1	=	(ref.sliding(bPwmData.value.length)

				.map(s	=>	{

						s.zipWithIndex.map(p	=>	bPwmData.value(p._2)(p._1)).product})

				.max)

		val	rc	=	Alphabet.dna.reverseComplementExact(ref)

		val	score2	=	(rc.sliding(bPwmData.value.length)

				.map(s	=>	{

						s.zipWithIndex.map(p	=>	bPwmData.value(p._2)(p._1)).product})

				.max)

		math.max(score1,	score2)

}

//	build	in-memory	structure	for	computing	distance	to	TSS

//	we	are	essentially	manually	implementing	a	broadcast	join	here

http://bit.ly/2qjsTNL


val	tssRDD	=	(

		sc.loadFeatures(

				Paths.get(hdfsPrefix,	"gencode.v18.annotation.gtf").toString).rdd

		.filter(_.getFeatureType	==	"transcript")

		.map(f	=>	(f.getContigName,	f.getStart))).rdd

		.filter(_.getFeatureType	==	"transcript")

		.map(f	=>	(f.getContigName,	f.getStart)))

//	this	broadcast	variable	will	hold	the	broadcast	side	of	the	"join"

val	bTssData	=	sc.broadcast(tssRDD

		//	group	by	contig	name

		.groupBy(_._1)

		//	create	Vector	of	TSS	sites	for	each	chromosome

		.map(p	=>	(p._1,	p._2.map(_._2.toLong).toVector))

		//	collect	into	local	in-memory	structure	for	broadcasting

		.collect().toMap)

//	load	conservation	data;	independent	of	cell	line

val	phylopRDD	=	(

		sc.loadParquetFeatures(Paths.get(hdfsPrefix,	"phylop").toString).rdd

		//	clean	up	a	few	irregularities	in	the	phylop	data

		.filter(f	=>	f.getStart	<=	f.getEnd)

		.map(f	=>	(ReferenceRegion.unstranded(f),	f))).rdd

		//	clean	up	a	few	irregularities	in	the	phylop	data

		.filter(f	=>	f.getStart	<=	f.getEnd)

		.map(f	=>	(ReferenceRegion.unstranded(f),	f)))

Now	that	we’ve	loaded	the	data	necessary	for	defining	our	training	examples,
we	define	the	body	of	the	“loop”	for	computing	the	data	on	each	cell	line.	Note
how	we	read	the	text	representations	of	the	ChIP-seq	and	DNase	data,	because
the	data	sets	are	not	so	large	that	they	will	hurt	performance.

To	do	so,	we	load	the	DNase	and	ChIP-seq	data	as	RDDs:

val	dnasePath	=	(

		Paths.get(hdfsPrefix,	s"dnase/$cellLine.DNase.narrowPeak")

				.toString)

val	dnaseRDD	=	(sc.loadFeatures(dnasePath).rdd

		.map(f	=>	ReferenceRegion.unstranded(f))

		.map(r	=>	(r,	r)))	

val	chipseqPath	=	(

		Paths.get(hdfsPrefix,	s"chip-seq/$cellLine.ChIP-seq.CTCF.narrowPeak")

				.toString)

val	chipseqRDD	=	(sc.loadFeatures(chipseqPath).rdd

		.map(f	=>	ReferenceRegion.unstranded(f))

		.map(r	=>	(r,	r)))	

RDD[(ReferenceRegion,	ReferenceRegion)]

The	core	object	is	a	DNase	hypersensitivity	site,	as	defined	by	a
ReferenceRegion	object	in	dnaseRDD.	Sites	that	overlap	a	ChIP-seq	peak,	as
defined	by	a	ReferenceRegion	in	chipseqRDD,	have	TF	binding	sites	and	are



therefore	labeled	true,	while	the	rest	of	the	sites	are	labeled	false.	This	is
accomplished	using	the	1D	spatial	join	primitives	provided	in	the	ADAM	API.
The	join	functionality	requires	an	RDD	that	is	keyed	by	a	ReferenceRegion,
and	will	produce	tuples	that	have	overlapping	regions,	according	to	usual	join
semantics	(e.g.,	inner	versus	outer).

val	dnaseWithLabelRDD	=	(

		LeftOuterShuffleRegionJoin(bHg19Data.value.sequences,	1000000,	sc)

				.partitionAndJoin(dnaseRDD,	chipseqRDD)	

				.map(p	=>	(p._1,	p._2.size))	

				.reduceByKey(_	+	_)	

				.map(p	=>	(p._1,	p._2	>	0))	

				.map(p	=>	(p._1,	p)))	

RDD[(ReferenceRegion,	Option[ReferenceRegion])]:	there	is	an	Option
because	we	are	employing	a	left	outer	join

RDD[(ReferenceRegion,	Int)]:	0	for	None	and	1	for	a	successful	match

Aggregate	all	possible	TF	binding	sites	overlaying	DNase	site

Positive	values	indicate	an	overlap	between	the	data	sets	and	therefore	a
TF	binding	site

Prepare	RDD	for	next	join	by	keying	it	with	a	ReferenceRegion

Separately,	we	compute	the	conservation	features	by	joining	the	DNase	data	to
the	phyloP	data:

//	given	phylop	values	on	a	site,	compute	some	stats

def	aggPhylop(values:	Vector[Double])	=	{

		val	avg	=	values.sum	/	values.length

		val	m	=	values.min

		val	M	=	values.max

		(avg,	m,	M)

}

val	dnaseWithPhylopRDD	=	(

		LeftOuterShuffleRegionJoin(bHg19Data.value.sequences,	1000000,	sc)

				.partitionAndJoin(dnaseRDD,	phylopRDD)	

				.filter(!_._2.isEmpty)	

				.map(p	=>	(p._1,	p._2.get.getScore.doubleValue))

				.groupByKey()	



				.map(p	=>	(p._1,	aggPhylop(p._2.toVector))))	

RDD[(ReferenceRegion,	Option[Feature])]

Filter	out	sites	for	which	there	is	missing	phylop	data

Aggregate	together	all	phylop	values	for	each	site

RDD[(ReferenceRegion,	(Double,	Double,	Double))]

Now	we	compute	the	final	set	of	features	on	each	DNase	peak	by	joining
together	the	two	RDDs	from	above	and	adding	a	few	additional	features	by
mapping	over	the	sites:

//	build	final	training	example	RDD

val	examplesRDD	=	(

		InnerShuffleRegionJoin(bHg19Data.value.sequences,	1000000,	sc)	

				.partitionAndJoin(dnaseWithLabelRDD,	dnaseWithPhylopRDD)

				.map(tup	=>	{

						val	seq	=	bHg19Data.value.extract(tup._1._1)	

						(tup._1,	tup._2,	seq)})

				.filter(!_._3.contains("N"))	

				.map(tup	=>	{	

						val	region	=	tup._1._1

						val	label	=	tup._1._2

						val	contig	=	region.referenceName

						val	start	=	region.start

						val	end	=	region.end

						val	phylopAvg	=	tup._2._1

						val	phylopMin	=	tup._2._2

						val	phylopMax	=	tup._2._3

						val	seq	=	tup._3

						val	pwmScore	=	scorePWM(seq)

						val	closestTss	=	math.min(

								distanceToClosest(bTssData.value(contig),	start),

								distanceToClosest(bTssData.value(contig),	end))

						val	tf	=	"CTCF"

						(contig,	start,	end,	pwmScore,	phylopAvg,	phylopMin,	phylopMax,

								closestTss,	tf,	cellLine,	label)}))

Inner	join	to	ensure	we	get	well-defined	feature	vectors

Extract	the	genome	sequence	corresponding	to	this	site	in	the	genome	and
attach	it	to	the	tuple



Drop	any	site	where	the	genome	sequence	is	ambiguous

Here	we	build	the	final	feature	vector
This	final	RDD	is	computed	in	each	pass	of	the	loop	over	the	cell	lines.	Finally,
we	union	each	RDD	from	each	cell	line,	and	cache	this	data	in	memory	in
preparation	for	training	models	off	of	it:

val	preTrainingData	=	dataByCellLine.reduce(_	++	_)

preTrainingData.cache()

preTrainingData.count()	//	802059

preTrainingData.filter(_._12	==	true).count()	//	220344

At	this	point,	the	data	in	preTrainingData	can	be	normalized	and	converted
into	an	RDD[LabeledPoint]	for	training	a	classifier,	as	described	in	Chapter	4.
Note	that	you	should	perform	cross-validation,	where	in	each	fold,	you	hold
out	the	data	from	one	of	the	cell	lines.



Querying	Genotypes	from	the	1000	Genomes	Project
In	this	example,	we	will	be	ingesting	the	full	1000	Genomes	genotype	data	set.
First,	we	will	download	the	raw	data	directly	into	HDFS,	unzipping	in-flight,
and	then	run	an	ADAM	job	to	convert	the	data	to	Parquet.	The	following
example	command	should	be	executed	for	all	chromosomes,	and	can	be
parallelized	across	the	cluster:

curl	-s	-L	ftp://.../1000genomes/.../chr1.vcf.gz	\	

		|	gunzip	\

		|	hadoop	fs	-put	-	/user/ds/genomics/1kg/vcf/chr1.vcf	

adam/bin/adam-submit	--master	yarn	--deploy-mode	client	\

		--driver-memory	8G	--num-executors	192	--executor-cores	4	\

		--executor-memory	16G	\

		--	\

		vcf2adam	/user/ds/genomics/1kg/vcf	/user/ds/genomics/1kg/parquet

See	the	accompanying	repo	for	the	actual	curl	commands

Copy	the	text	VCF	file	into	Hadoop
From	an	ADAM	shell,	we	load	and	inspect	an	object	like	so:

import	org.bdgenomics.adam.rdd.ADAMContext._

val	genotypesRDD	=	sc.loadGenotypes("/user/ds/genomics/1kg/parquet")

val	gt	=	genotypesRDD.rdd.first()

...

Say	we	want	to	compute	the	minor	allele	frequency	across	all	our	samples	for
each	variant	genome-wide	that	overlaps	a	CTCF	binding	site.	We	essentially
must	join	our	CTCF	data	from	the	previous	section	with	the	genotype	data
from	the	1000	Genomes	project.	In	the	previous	TF	binding	site	example,	we
showed	how	to	use	the	ADAM	join	machinery	directly.	However,	when	we	load
data	through	ADAM,	in	many	cases	we	obtain	an	object	that	implements	the
GenomicRDD	trait,	which	has	some	built-in	methods	for	filtering	and	joining,	as
we	show	below:

import	org.bdgenomics.adam.models.ReferenceRegion



import	org.bdgenomics.adam.rdd.InnerTreeRegionJoin

val	ctcfRDD	=	(sc.loadFeatures(

		"/user/ds/genomics/chip-seq/GM12878.ChIP-seq.CTCF.narrowPeak").rdd

		.map(f	=>	{	

				f.setContigName(f.getContigName.stripPrefix("chr"))

				f

		})

		.map(f	=>	(ReferenceRegion.unstranded(f),	f)))

val	keyedGenotypesRDD	=	genotypesRDD.rdd.map(f	=>	(ReferenceRegion(f),	f))

val	filteredGenotypesRDD	=	(	

		InnerTreeRegionJoin().partitionAndJoin(ctcfRDD,	keyedGenotypesRDD)

		.map(_._2))

filteredGenotypesRDD.cache()	

filteredGenotypesRDD.count()	//	408107700

We	must	perform	this	mapping	because	the	CTCF	data	uses	“chr1”
whereas	the	genotype	data	uses	“1”	to	refer	to	the	same	chromosome.

The	inner	join	performs	the	filtering.	We	broadcast	the	CTCF	data
because	it	is	relatively	small.

Because	the	computation	is	large,	we	cache	the	resulting	filtered	data	to
avoid	recomputing	it.

We	also	need	a	function	that	will	take	a	Genotype	and	compute	the	counts	of	the
reference/alternate	alleles:

import	scala.collection.JavaConverters._

import	org.bdgenomics.formats.avro.{Genotype,	Variant,	GenotypeAllele}

def	genotypeToAlleleCounts(gt:	Genotype):	(Variant,	(Int,	Int))	=	{

		val	counts	=	gt.getAlleles.asScala.map(allele	=>	{	allele	match	{

				case	GenotypeAllele.REF	=>	(1,	0)

				case	GenotypeAllele.ALT	=>	(0,	1)

				case	_	=>	(0,	0)

		}}).reduce((x,	y)	=>	(x._1	+	y._1,	x._2	+	y._2))

		(gt.getVariant,	(counts._1,	counts._2))

}

Finally,	we	generate	the	RDD[(Variant,	(Int,	Int))]	and	perform	the
aggregation:

val	counts	=	filteredGenotypesRDD.map(gt	=>	{	

		val	counts	=	gt.getAlleles.asScala.map(allele	=>	{	allele	match	{

				case	GenotypeAllele.REF	=>	(1,	0)

				case	GenotypeAllele.ALT	=>	(0,	1)

				case	_	=>	(0,	0)

		}}).reduce((x,	y)	=>	(x._1	+	y._1,	x._2	+	y._2))

		(gt.getVariant,	(counts._1,	counts._2))



})

val	countsByVariant	=	counts.reduceByKey(

		(x,	y)	=>	(x._1	+	y._1,	x._2	+	y._2))

val	mafByVariant	=	countsByVariant.map(tup	=>	{

		val	(v,	(r,	a))	=	tup

		val	n	=	r	+	a

		(v,	math.min(r,	a).toDouble	/	n)

})

We	write	this	function	anonymously	because	of	a	potential	problem	with
closure	serialization	when	working	in	a	shell.	Spark	will	try	to	serialize
everything	in	the	shell,	which	can	cause	errors.	When	running	as	a
submitted	job,	the	named	function	should	work	fine.

The	countsByVariant	RDD	stores	objects	of	type	(Variant,	(Int,	Int)),
where	the	first	member	of	the	tuple	is	the	specific	genome	variant	and	the
second	member	is	a	pair	of	counts:	the	first	is	the	number	of	reference	alleles
seen,	while	the	second	is	the	number	of	alternate	alleles	seen.	The
mafByVariant	RDD	stores	objects	of	type	(Variant,	Double),	where	the
second	member	is	the	computed	minor	allele	frequency	from	the	pairs	in
countsByVariant.	As	an	example:

scala>	countsByVariant.first._2

res21:	(Int,	Int)	=	(1655,4)

scala>	val	mafExample	=	mafByVariant.first

mafExample:	(org.bdgenomics.formats.avro.Variant,	Double)	=	[...]

scala>	mafExample._1.getContigName	->	mafExample._1.getStart

res17:	(String,	Long)	=	(X,149849811)

scala>	mafExample._2

res18:	Double	=	0.0024110910186859553

Traversing	the	entire	data	set	is	a	sizable	operation.	Because	we’re	only
accessing	a	few	fields	from	the	genotype	data,	it	would	certainly	benefit	from
predicate	pushdown	and	projection,	which	we	leave	as	an	exercise	to	the
reader.	Also	try	running	the	computation	on	a	subset	of	the	data	files	if	you
cannot	access	a	suitable	cluster.



Where	to	Go	from	Here
Many	computations	in	genomics	fit	nicely	into	the	Spark	computational
paradigm.	When	you’re	performing	ad	hoc	analysis,	the	most	valuable
contribution	that	projects	like	ADAM	provide	is	the	set	of	Avro	schemas	that
represents	the	underlying	analytical	objects	(along	with	the	conversion	tools).
We	saw	how	once	data	is	converted	into	the	corresponding	Avro	schemas,
many	large-scale	computations	become	relatively	easy	to	express	and
distribute.

While	there	may	still	be	a	relative	dearth	of	tools	for	performing	scientific
research	on	Hadoop/Spark,	there	do	exist	a	few	projects	that	could	help	avoid
reinventing	the	wheel.	We	explored	the	core	functionality	implemented	in
ADAM,	but	the	project	already	has	implementations	for	the	entire	GATK	best-
practices	pipeline,	including	BQSR,	indel	realignment,	and	deduplication.	In
addition	to	ADAM,	many	institutions	have	signed	on	to	the	Global	Alliance	for
Genomics	and	Health,	which	has	started	to	generate	schemas	of	its	own	for
genomics	analysis.	The	Broad	Institute	is	now	developing	major	software
projects	using	Spark,	including	the	newest	version	of	the	GATK4	and	a	new
project	called	Hail	for	large-scale	population	genetics	computations.	The
Hammerbacher	lab	at	Mount	Sinai	School	of	Medicine	has	also	developed
Guacamole,	a	suite	of	tools	mainly	aimed	at	somatic	variant	calling	for	cancer
genomics.	All	of	these	tools	are	open	source,	so	if	you	start	using	them	in	your
own	work,	please	consider	contributing	improvements!

https://github.com/broadinstitute/gatk
https://github.com/hail-is/hail
https://github.com/hammerlab/guacamole


Chapter	11.	Analyzing	Neuroimaging
Data	with	PySpark	and	Thunder
Uri	Laserson

We	are	not	interested	in	the	fact	that	the	brain	has	the	consistency	of	cold
porridge.
Alan	Turing

Advances	in	imaging	equipment	and	automation	have	led	to	a	glut	of	data	on
the	function	of	the	brain.	While	past	experiments	might	have	generated	time
series	data	from	only	a	handful	of	electrodes	in	the	brain	or	a	small	number	of
static	images	of	brain	slices,	technologies	today	can	sample	brain	activity	from
a	large	number	of	neurons	in	a	large	region	while	organisms	are	actively
behaving.	Indeed,	the	BRAIN	Initiative	is	a	government-funded	initiative	with
the	lofty	technology	development	goals	of	enabling,	for	example,
simultaneous	recording	of	the	electrical	activity	of	every	neuron	of	the	mouse
brain	over	an	extended	period	of	time.	While	breakthroughs	in	measurement
technology	are	certainly	necessary,	the	amount	of	data	generated	will	create
completely	new	paradigms	for	biology.

In	this	chapter,	we	will	introduce	the	PySpark	API	for	interacting	with	Spark
through	Python,	as	well	as	the	Thunder	project,	which	is	developed	on	top	of
PySpark	for	processing	large	amounts	of	time	series	data	in	general	and
neuroimaging	data	in	particular.	PySpark	is	a	particularly	flexible	tool	for
exploratory	big	data	analysis	because	it	integrates	well	with	the	rest	of	the
PyData	ecosystem,	including	matplotlib	for	visualization,	and	even	IPython
Notebook	(Jupyter)	for	“executable	documents.”

We	will	marshal	these	tools	for	the	task	of	understanding	some	of	the	structure
of	zebrafish	brains.	Using	Thunder,	we	will	cluster	different	regions	of	the
brain	(representing	groups	of	neurons)	to	discover	patterns	of	activity	as	the
zebrafish	behaves	over	time.	Like	the	chapter,	Thunder	was	built	on	the
PySpark	RDD	API,	and	continues	to	use	it.

https://www.braininitiative.nih.gov
https://spark.apache.org/docs/latest/api/python/
http://thunder-project.org


Overview	of	PySpark
Python	is	a	favorite	tool	for	many	data	scientists,	due	to	its	high-level	syntax
and	extensive	library	of	packages,	among	other	things.	The	Spark	ecosystem
has	recognized	Python’s	importance	in	the	data	analytics	milieu	and	has
invested	in	a	Python	API	for	using	Spark,	despite	Python’s	historical
difficulties	integrating	with	the	JVM.

PYTHON	FOR 	SCIENTIFIC	COMPUTING	AND	DATA	SCIENCE

Python	has	become	a	favorite	tool	for	scientific	computing	and	data	science.	It	is	now	being	used	for
many	applications	that	would	have	traditionally	used	MATLAB,	R,	or	Mathematica.	The	reasons
include	the	following:

Python	is	a	high-level	language	that	is	easy	to	use	and	learn.

It	has	an	extensive	library	system	ranging	from	niche	numerical	calculations	to	web-scraping
utilities	to	data	visualization	tools.

It	interfaces	easily	with	C/C++	code,	allowing	access	to	high-performance	libraries,	including
BLAS/LAPACK/ATLAS.

Some	libraries	to	keep	in	mind	in	particular	include:

numpy/scipy/matplotlib
These	libraries	recapitulate	typical	MATLAB	functionality,	including	fast	array	operations,
scientific	functions,	and	a	widely	used	MATLAB-inspired	plotting	library.

pandas

This	library	provides	functionality	similar	to	R’s	data.frame,	and	oftentimes	with	much	higher
performance	to	boot.

scikit-learn/statsmodels
These	libraries	provide	high-quality	implementations	of	machine	learning	algorithms	(e.g.,
classification/regression,	clustering,	matrix	factorization)	and	statistical	models.

nltk

A	popular	library	for	natural	language	processing.

You	can	find	a	large	list	of	many	other	available	libraries	curated	at	the	awesome-python	repository
on	GitHub.

Start	PySpark	just	like	Spark:

export	PYSPARK_DRIVER_PYTHON=ipython	#	PySpark	can	use	the	IPython	shell

export	PYSPARK_PYTHON=path/to/desired/python	#	For	the	worker	nodes

pyspark	--master	...	--num-executors	...		

https://bit.ly/186ShId
https://github.com/vinta/awesome-python


pyspark	takes	the	same	Spark	arguments	as	spark-submit	and	spark-
shell

We	can	submit	Python	scripts	using	spark-submit,	which	will	detect	the	.py
extension	on	our	scripts.	You	can	specify	which	version	of	Python	to	use	for
the	driver	(e.g.,	IPython)	and	for	the	worker	nodes;	their	versions	must	match.
When	the	Python	shell	starts,	it	creates	a	Python	SparkContext	object	(named
sc)	through	which	we	interact	with	the	cluster.	Once	the	SparkContext	is
available,	the	PySpark	API	is	very	similar	to	the	Scala	API.	For	example,	to
load	some	CSV	data:

raw_data	=	sc.textFile('path/to/csv/data')	#	RDD[string]

#	filter,	split	on	comma,	parse	floats	to	get	a	RDD[list[float]]

data	=	(raw_data

				.filter(lambda	x:	x.startswith("#"))

				.map(lambda	x:	map(float,	x.split(','))))

data.take(5)

Just	like	in	the	Scala	RDD	API,	we	load	a	text	file,	filter	out	rows	that	start	with
#,	and	parse	the	CSV	data	into	a	list	of	float	values.	The	Python	functions
passed	to,	for	example,	filter	and	map,	are	very	flexible.	They	must	take	a
Python	object	and	return	a	Python	object	(in	the	case	of	filter,	the	return
value	is	interpreted	as	a	boolean).	The	only	restrictions	are	that	the	Python
function	objects	must	be	serializable	with	cloudpickle	(which	includes
anonymous	lambda	functions),	and	any	necessary	modules	referenced	in	the
closures	must	be	available	on	the	PYTHONPATH	of	the	executor	Python
processes.	To	ensure	the	availability	of	referenced	modules,	either	the	modules
must	be	installed	cluster-wide	and	available	on	the	PYTHONPATH	of	the	executor
Python	processes,	or	the	corresponding	module	ZIP/EGG	files	must	be
explicitly	distributed	around	by	Spark,	which	will	then	add	them	to	the
PYTHONPATH.	This	latter	functionality	can	be	accomplished	by	a	call	to
sc.addPyFile().

The	PySpark	RDDs	are	just	RDDs	of	Python	objects:	like	Python	lists,	they	can
store	objects	with	mixed	types	(because	underneath,	all	the	objects	are
instances	of	PyObject).



PySpark	Internals
It	is	useful	to	understand	a	bit	about	how	PySpark	is	implemented	in	order	to
simplify	debugging	and	also	to	be	conscious	of	possible	performance	pitfalls
(see	Figure	11-1).

Figure	11-1.	PySpark	internal	architecture

When	PySpark’s	Python	interpreter	starts,	it	also	starts	a	JVM	with	which	it
communicates	through	a	socket.	PySpark	uses	the	Py4J	project	to	handle	this
communication.	The	JVM	functions	as	the	actual	Spark	driver,	and	loads	a
JavaSparkContext	that	communicates	with	the	Spark	executors	across	the
cluster.	Python	API	calls	to	the	SparkContext	object	are	then	translated	into
Java	API	calls	to	the	JavaSparkContext.	For	example,	the	implementation	of
PySpark’s	sc.textFile()	dispatches	a	call	to	the	.textFile	method	of	the
JavaSparkContext,	which	ultimately	communicates	with	the	Spark	executor
JVMs	to	load	the	text	data	from	HDFS.

The	Spark	executors	on	the	cluster	start	a	Python	interpreter	for	each	core,
with	which	they	communicate	data	through	a	Unix	pipe	(stdin	and	stdout)
when	they	need	to	execute	user	code.	A	Python	RDD	in	the	local	PySpark	client



corresponds	to	a	PythonRDD	object	in	the	local	JVM.	The	data	associated	with
the	RDD	actually	lives	in	the	Spark	JVMs	as	Java	objects.	For	example,
running	sc.textFile()	in	the	Python	interpreter	will	call	the
JavaSparkContexts	textFile	method,	which	loads	the	data	as	Java	String
objects	in	the	cluster.	Similarly,	loading	a	Parquet/Avro	file	using
newAPIHadoopFile	will	load	the	objects	as	Java	Avro	objects.

When	an	API	call	is	made	on	the	Python	RDD,	any	associated	code	(e.g.,
Python	lambda	function)	is	serialized	via	cloudpickle	and	distributed	to	the
executors.	The	data	is	then	converted	from	Java	objects	to	a	Python-compatible
representation	(e.g.,	pickle	objects)	and	streamed	to	executor-associated	Python
interpreters	through	a	pipe.	Any	necessary	Python	processing	is	executed	in	the
interpreter,	and	the	resulting	data	is	stored	back	as	an	RDD	(as	pickle	objects
by	default)	in	the	JVMs.

Python’s	built-in	support	for	serializing	executable	code	is	not	as	powerful	as
Scala’s.	As	a	result,	the	authors	of	PySpark	had	to	use	a	custom	module	called
“cloudpickle”	built	by	the	now	defunct	PiCloud.



Overview	and	Installation	of	the	Thunder	Library



THUNDER	EXAMPLES	AND	DOCUMENTATION
The	Thunder	package	has	excellent	documentation	and	tutorials.	The	following	examples
draw	from	the	documentation’s	data	sets	and	tutorials.

Thunder	is	a	Python	tool	set	for	processing	large	amounts	of	spatial/temporal
data	sets	(i.e.,	large	multidimensional	matrices)	on	Spark.	It	makes	heavy	use
of	NumPy	for	matrix	computations	and	also	the	MLlib	library	for	distributed
implementations	of	some	statistical	techniques.	Python	also	makes	it	very
flexible	and	accessible	to	a	broad	audience.	In	the	following	section,	we
introduce	the	Thunder	API	and	attempt	to	classify	some	neural	traces	into	a	set
of	patterns	using	MLlib’s	K-means	implementation	as	wrapped	by	Thunder	and
PySpark.	Installing	Thunder	simply	requires	calling	pip	install	thunder-
python,	though	it	must	be	installed	on	all	worker	nodes.

After	installation,	and	setting	the	SPARK_HOME	environment	variable,	we	can
create	PySpark	shell	like	so:

$	export	PYSPARK_DRIVER_PYTHON=ipython	#	recommended	as	usual

$	pyspark	--master	...	--num-executors	...

[...some	logging	output...]

Welcome	to

						____														__

					/	__/__		___	_____/	/__

				_\	\/	_	\/	_	`/	__/		'_/

			/__	/	.__/\_,_/_/	/_/\_\			version	2.0.2

						/_/

Using	Python	version	2.7.6	(default,	Apr		9	2014	11:54:50)

SparkContext	available	as	sc.

Running	thunder	version	0.5.0_dev

A	thunder	context	is	available	as	tsc

In	[1]:



Loading	Data	with	Thunder
Thunder	was	designed	especially	with	neuroimaging	data	sets	in	mind.
Therefore,	it	is	geared	toward	analyzing	data	from	large	sets	of	images	that
are	often	captured	over	time.

Let’s	start	by	loading	some	images	of	zebrafish	brains	from	an	example	data
set	provided	by	the	Thunder	repository	in	S3:	s3://thunder-sample-
data/images/fish/.	For	the	purposes	of	demonstration,	the	examples	presented
are	performed	on	enormously	downsampled	data.	See	the	Thunder
documentation	for	additional	(and	larger)	data	sets.	The	zebrafish	is	a
commonly	used	model	organism	in	biology	research.	It	is	small,	reproduces
quickly,	and	is	used	as	a	model	for	vertebrate	development.	It’s	also	interesting
because	it	has	exceptionally	fast	regenerative	capabilities.	In	the	context	of
neuroscience,	the	zebrafish	makes	a	great	model	because	it	is	transparent	and
the	brain	is	small	enough	that	it	is	essentially	possible	to	image	it	entirely	at	a
high-enough	resolution	to	distinguish	individual	neurons.	Here	is	the	code	to
load	the	data:

import	thunder	as	td

data	=	td.images.fromtif('/user/ds/neuro/fish',	engine=sc)	

print	data

print	type(data.values)

print	data.values._rdd

...

Images

mode:	spark	

dtype:	uint8

shape:	(20,	2,	76,	87)

<class	'bolt.spark.array.BoltArraySpark'>	

PythonRDD[2]	at	RDD	at	PythonRDD.scala:48	

Note	how	we	pass	the	SparkContext	object.	Thunder	also	supports	local
operations	with	the	same	API.

We	can	see	an	Images	object	backed	by	Spark.

The	underlying	data	container	abstraction	is	a	BoltArray.	This	project



abstracts	over	local	data	representation	and	Spark	RDD	representations.

The	underlying	RDD	object
This	created	an	Images	object	that	ultimately	wraps	an	RDD,	accessible	as
data.values._rdd.	The	Images	object	exposes	the	relevant	similar
functionality	(like	count,	first,	etc.)	as	well.	The	underlying	objects	stored	in
Images	are	key-value	pairs:

print	data.values._rdd.first()

...

((0,),	array([[[26,	26,	26,	...,	26,	26,	26],

								[26,	26,	26,	...,	26,	26,	26],

								[26,	26,	26,	...,	27,	27,	26],

								...,

								[26,	26,	26,	...,	27,	27,	26],

								[26,	26,	26,	...,	27,	26,	26],

								[25,	25,	25,	...,	26,	26,	26]],

							[[25,	25,	25,	...,	26,	26,	26],

								[25,	25,	25,	...,	26,	26,	26],

								[26,	26,	26,	...,	26,	26,	26],

								...,

								[26,	26,	26,	...,	26,	26,	26],

								[26,	26,	26,	...,	26,	26,	26],

								[25,	25,	25,	...,	26,	26,	26]]],	dtype=uint8))

The	key	(0,)	corresponds	to	the	zeroth	image	in	the	set	(they	are	ordered
lexicographically	from	the	data	directory),	and	the	value	is	a	NumPy	array
corresponding	to	the	image.	All	of	the	core	data	types	in	Thunder	are
ultimately	backed	by	Python	RDDs	of	key-value	pairs,	where	the	keys	are
typically	some	kind	of	tuple	and	the	values	are	NumPy	arrays.	The	keys	and
values	always	have	a	homogeneous	type	across	the	RDD,	even	though	PySpark
generally	allows	RDDs	of	heterogeneous	collections.	Because	of	the
homogeneity,	the	Images	object	exposes	a	.shape	property	describing	the
underlying	dimensions:

print	data.shape

...

(20,	2,	76,	87)

This	describes	20	“images”	where	each	image	is	a	2×76×87	stack.

PIXELS,	VOXELS,	AND	STACKS



“Pixel”	is	a	portmanteau	of	“picture	element.”	Digital	images	can	be	modeled	as	simple	2D	matrices
of	intensity	values,	and	each	element	in	the	matrix	is	a	pixel.	(A	color	image	would	require	three	of
these	matrices,	one	each	for	a	red,	green,	and	blue	channel.)	However,	because	the	brain	is	a	3D
object,	a	single	2D	slice	is	not	nearly	enough	to	capture	its	activity.	To	address	this,	multiple
techniques	will	either	acquire	multiple	2D	images	in	different	planes	on	top	of	each	other	(a	z-stack),
and	some	will	even	generate	3D	information	directly	(e.g.,	light	field	microscopy).	This	ultimately
produces	a	3D	matrix	of	intensity	values,	where	each	value	represents	a	“volume	element,”	or
“voxel.”	Consistent	with	this,	Thunder	models	all	images	as	2D	or	3D	matrices,	depending	on	the
specific	data	type,	and	can	read	file	formats	like	.tiff	that	can	natively	represent	3D	stacks.

One	of	the	features	of	working	in	Python	is	that	we	can	easily	visualize	our
data	while	working	with	the	RDDs,	in	this	case	using	the	venerable	matplotlib
library	(see	Figure	11-2):

import	matplotlib.pyplot	as	plt

img	=	data.first()

plt.imshow(img[:,	:,	0],	interpolation='nearest',	aspect='equal',

				cmap='gray')

Figure	11-2.	A	single	slice	from	the	raw	zebrafish	data



The	Images	API	offers	useful	methods	for	working	with	the	image	data	in	a
distributed	fashion	—	for	example,	to	subsample	each	image	down	(see
Figure	11-3):

subsampled	=	data.subsample((1,	5,	5))	

plt.imshow(subsampled.first()[:,	:,	0],	interpolation='nearest',

				aspect='equal',	cmap='gray')

print	subsampled.shape

...

(20,	2,	16,	18)

The	stride	to	subsample	each	dimension:	the	first	dimension	is	not
subsampled	while	the	second	and	third	dimensions	take	every	fifth	value.
Note	that	this	is	an	RDD	operation,	so	it	returns	immediately,	waiting	for
an	RDD	action	to	trigger	computation.

Figure	11-3.	A	single	slice	from	the	subsampled	zebrafish	data



While	analyzing	the	collection	of	images	may	be	useful	for	certain	operations
(e.g.,	normalizing	images	in	certain	ways),	it’s	difficult	to	take	the	temporal
relationship	of	the	images	into	account.	To	do	so,	we’d	rather	work	with	the
image	data	as	a	collection	of	pixel/voxel	time	series.	This	is	exactly	what	the
Thunder	Series	object	is	for,	and	there	is	an	easy	way	to	convert:

series	=	data.toseries()

This	operation	executes	a	large-scale	reorganization	of	the	data	into	a	Series
object,	which	is	an	RDD	of	key-value	pairs	where	the	key	is	a	tuple	of	the
coordinates	of	each	image	(i.e.,	the	voxel	identifier)	and	the	value	is	a	1D
NumPy	array	corresponding	to	the	time	series	of	values:

print	series.shape

print	series.index

print	series.count()

...

(2,	76,	87,	20)

[	0		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17	18	19]

13224

Whereas	data	was	a	collection	of	20	images	with	dimensions	76×87×2,	series
is	a	collection	of	13,224	(76×87×2)	time	series	of	length	20.	The
series.index	property	is	a	Pandas-style	index	that	can	be	used	to	reference
each	of	the	arrays.	Because	our	original	images	were	3D,	the	keys	are	3-tuples:

print	series.values._rdd.takeSample(False,	1)[0]

...

((0,	50,	6),	array([29,	29,	29,	29,	29,	29,	29,	29,	29,	29,	29,	29,	29,

							29,	29,	29,	29,	29,	29,	29],	dtype=uint8))

The	Series	API	offers	many	methods	for	performing	computations	across	the
time	series,	either	at	the	per-series	level	or	across	all	series.	For	example:

print	series.max().values

...

[[[[158	152	145	143	142	141	140	140	139	139	140	140	142	144	153	168	179	185

				185	182]]]]

computes	the	maximum	value	across	all	voxels	at	each	time	point,	while:



stddev	=	series.map(lambda	s:	s.std())

print	stddev.values._rdd.take(3)

print	stddev.shape

...

[((0,	0,	0),	array([	0.4])),	((0,	0,	1),	array([	0.35707142]))]

(2,	76,	87,	20)

computes	the	standard	deviation	of	each	time	series	and	returns	the	result	as	an
RDD,	preserving	all	the	keys.

We	can	also	locally	repack	the	Series	into	a	NumPy	array	with	the	specified
shape	(2×76×87	in	this	case):

repacked	=	stddev.toarray()

plt.imshow(repacked[:,:,0],	interpolation='nearest',	cmap='gray',

				aspect='equal')

print	type(repacked)

print	repacked.shape

...

<type	'numpy.ndarray'>

(2,	76,	87)

This	allows	us	to	plot	the	standard	deviation	of	each	voxel	using	the	same
spatial	relationships	(see	Figure	11-4).	We	should	take	care	to	make	sure	that
we’re	not	trying	to	return	too	much	data	to	the	client,	because	it	will	consume
significant	network	and	memory	resources.



Figure	11-4.	Standard	deviation	of	each	voxel	in	the	raw	zebrafish	data

Alternatively,	we	can	look	at	the	centered	time	series	directly,	by	plotting	a
subset	of	them	(see	Figure	11-5):

plt.plot(series.center().sample(50).toarray().T)



Figure	11-5.	A	random	subset	of	50	of	the	centered	time	series

It’s	also	very	easy	to	apply	any	UDFs	to	each	series	(including	lambda
functions),	using	the	map	method,	which	calls	the	underlying	RDD’s	.map()
method	on	the	values	in	the	underlying	key-value	pairs.

series.map(lambda	x:	x.argmin())



Thunder	Core	Data	Types
More	generally,	the	two	core	data	types	in	Thunder,	Series	and	Images,	both
inherit	from	the	Data	class,	which	ultimately	contains	a	BoltArray	that	is
backed	by	either	a	local	NumPy	array	or	a	Spark	RDD.	The	Data	class	models
RDDs	of	key-value	pairs,	where	the	key	represents	some	type	of	semantic
identifier	(e.g.,	a	tuple	of	coordinates	in	space),	and	the	value	is	a	NumPy	array
of	actual	data.	For	the	Images	object,	the	key	could	be	a	time	point,	for
example,	and	the	value	is	the	image	at	that	time	point	formatted	as	a	NumPy
array.	For	the	Series	object,	the	key	might	be	an	n-dimensional	tuple	with	the
coordinates	of	the	corresponding	voxel,	while	the	value	is	a	1D	NumPy	array
representing	the	time	series	of	measurements	at	that	voxel.	All	the	arrays	in
Series	must	have	the	same	dimensions.

We	can	typically	represent	the	same	data	set	as	either	an	Images	or	Series
object,	converting	between	the	two	through	a	(possibly	expensive)	shuffle
operation	(analogous	to	switching	between	row-major	and	column-major
representations).

Data	for	Thunder	can	be	persisted	as	a	set	of	images,	with	the	ordering
encoded	by	lexicographic	ordering	of	the	individual	image	filenames;	or	the
data	can	be	persisted	as	a	set	of	binary	1D	arrays	for	Series	objects.	See	the
documentation	for	more	details.

http://docs.thunder-project.org


Categorizing	Neuron	Types	with	Thunder
In	this	example,	we’ll	use	the	K-means	algorithm	to	cluster	the	various	fish
time	series	into	multiple	clusters	in	an	attempt	to	describe	the	classes	of	neural
behavior.	We	will	use	data	already	persisted	as	Series	data	packaged	in	the
repo	that	is	larger	than	the	image	data	used	previously.	However,	the	spatial
resolution	of	this	data	is	still	too	low	to	define	individual	neurons.

First,	we	load	the	data:

#	this	data	set	is	available	in	the	aas	repo

images	=	td.images.frombinary(

				'/user/ds/neuro/fish-long',	order='F',	engine=sc)

series	=	images.toseries()

print	series.shape

...

(76,	87,	2,	240)

[		0			1			2			3			4			5			6			...			234	235	236	237	238	239]

We	see	this	represents	images	with	the	same	dimensions	as	earlier,	but	with
240	time	points	instead	of	20.	We	must	normalize	our	features	to	get	the	best
clustering:

normalized	=	series.normalize(method='mean')

Let’s	plot	a	few	of	the	series	to	see	what	they	look	like.	Thunder	allows	us	to
take	a	random	subset	of	the	RDD	and	filter	only	collection	elements	that	meet	a
certain	criterion,	like	minimum	standard	deviation	by	default.	To	choose	a
good	value	for	the	threshold,	let’s	first	compute	the	standard	deviation	of	each
series	and	plot	a	histogram	of	a	10%	sample	of	the	values	(see	Figure	11-6):

stddevs	=	(normalized

				.map(lambda	s:	s.std())

				.sample(1000))

plt.hist(stddevs.values,	bins=20)



Figure	11-6.	Distribution	of	the	standard	deviations	of	the	voxels

With	this	in	mind,	we’ll	choose	a	threshold	of	0.1	to	look	at	the	most	“active”
series	(see	Figure	11-7):

plt.plot(

				normalized

								.filter(lambda	s:	s.std()	>=	0.1)

								.sample(50)

								.values.T)



Figure	11-7.	Fifty	of	the	most	active	time	series,	based	on	standard	deviation

Now	that	we	have	a	feel	for	the	data,	let’s	finally	cluster	the	voxels	into	the
various	patterns	of	behavior	using	MLlib’s	K-means	implementation.	We	will
perform	K-means	for	multiple	values	of	k:

from	pyspark.mllib.clustering	import	KMeans

ks	=	[5,	10,	15,	20,	30,	50,	100,	200]

models	=	[]

for	k	in	ks:

				models.append(KMeans.train(normalized.values._rdd.values(),	k))

Now	we’ll	compute	two	simple	error	metrics	on	each	of	the	clusterings.	The
first	will	simply	be	the	sum	across	all	time	series	of	the	Euclidean	distance
from	the	time	series	to	its	cluster	center.	The	second	will	be	a	built-in	metric	of
the	KMeansModel	object:

def	model_error_1(model):



				def	series_error(series):

								cluster_id	=	model.predict(series)

								center	=	model.centers[cluster_id]

								diff	=	center	-	series

								return	diff.dot(diff)	**	0.5

				return	(normalized

								.map(series_error)

								.toarray()

								.sum())

def	model_error_2(model):

				return	model.computeCost(normalized.values._rdd.values())

We	will	compute	both	error	metrics	for	each	value	of	k	and	plot	them	(see
Figure	11-8):

import	numpy	as	np

errors_1	=	np.asarray(map(model_error_1,	models))

errors_2	=	np.asarray(map(model_error_2,	models))

plt.plot(

				ks,	errors_1	/	errors_1.sum(),	'k-o',

				ks,	errors_2	/	errors_2.sum(),	'b:v')



Figure	11-8.	K-means	error	metrics	as	a	function	of	k	(black	circles	are	model_error_1	and	blue
triangles	are	model_error_2)

We’d	expect	these	metrics	to	generally	be	monotonically	decreasing	with	k;	it
seems	like	k=20	might	be	a	sharper	elbow	in	the	curve.	Let’s	visualize	the
cluster	centers	that	we’ve	learned	from	the	data	(see	Figure	11-9):

model20	=	models[3]

plt.plot(np.asarray(model20.centers).T)



Figure	11-9.	Model	centers	for	k=20

It’s	also	easy	to	plot	the	images	themselves	with	the	voxels	colored	according
to	their	assigned	cluster	(see	Figure	11-10):

import	seaborn	as	sns

from	matplotlib.colors	import	ListedColormap

cmap_cat	=	ListedColormap(sns.color_palette("hls",	10),	name='from_list')

by_cluster	=	normalized.map(lambda	s:	model20.predict(s)).toarray()

plt.imshow(by_cluster[:,	:,	0],	interpolation='nearest',

				aspect='equal',	cmap='gray')



Figure	11-10.	Voxels	colored	by	cluster	membership

It’s	clear	that	the	learned	clusters	recapitulate	certain	elements	of	zebrafish
brain	anatomy.	If	the	original	data	were	high	resolution	enough	to	resolve
subcellular	structures,	we	could	first	perform	clustering	of	the	voxels	with	k
equal	to	an	estimate	of	the	number	of	neurons	in	the	imaged	volume.	This
would	allow	us	to	effectively	map	out	the	entire	neuron	cell	bodies.	We	would
then	define	time	series	for	each	neuron,	which	could	be	used	for	clustering
again	to	determine	different	functional	categories.



Where	to	Go	from	Here
Thunder	is	a	relatively	new	project,	but	includes	a	rich	set	of	functionality.	In
addition	to	statistics	on	time	series	and	clustering,	it	has	modules	for	matrix
factorizations,	regression/classification,	and	tools	for	visualization.	It	has
fantastic	documentation	and	tutorials	covering	a	large	array	of	its	functionality.
To	see	Thunder	in	action,	see	the	“Mapping	brain	activity	at	scale	with	cluster
computing”	by	Thunder	authors	in	Nature	Methods	(July	2014).

https://bit.ly/186YPqi
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